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Eigenvalue problems with indefinite weight
by

ANDRZEJ SZULKIN (Stockholm)
and MICHEL WILLEM (Louvain-la-Neuve)

Abstract. We consider the linear eigenvalue problem —Au = M\V{z)u, u £ Dé'z(ﬂ),
and its nonlinear generalization —Apu = AV(z)|uf’ %u, v € Dé’p(ﬂ). The set {2 need
not be bounded, in particular, 2 = R is admitted. The weight function ¥V may change

sign and may have singular points. We show that there exists a sequence of eigenvalues
An — CO.

1. Introduction. In this paper we shall be concerned with the linear
eigenvalue problem

(1) —Au= MV (2)u, ueDy?(),
2 open in RY, N > 3, and its nonlinear generalization
(2) —Agu = AV(2)|ulP%u, u e DyF(N),

where Apu = div(|Vul|P~2Vu) is the p-Laplacian, 1 < p < N, and 2
is open in RM. Observe that {2 may be unbounded, and in particular, it
may be equal to RY. We assume that V € LL (2), V= V* -V~ (as
usual, VE(z) := max{+V(z),0}) and V1 =V} + Vg, where V3 € LV/P(2),
|£|PVa(z)} ~ 0 as |5| — oo and for each y € {2, |z — y|?Va(x) » Dasz — y
(in the linear case (1), p = 2 in the conditions on V'*). Under these hy-
potheses we show that (1) and (2) have a sequence of eigenvalues A, — oc.
This generalizes several earlier results. In particular, for 2 = RV it was
shown in [3, 4] that (1) has a principal eigenvalue X; if V is sufficiently
smooth and satisfies an appropriate condition at infinity, and in [1] exis-
tence of infinitely many eigenvalues A, — oo of (1) was established under
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the assumption that V € L°(RY) and V+ € LY¥/2(RY). In [18] several re-
sults on the existence and nonexistence of a principal eigenvalue of (1) were
obtained for nonnegative weight functions V of Hardy type. In this case
even if a principal eigenvalue exists, one cannot expect to have a sequence
of eigenvalues A\, — oo. Equation (2) for 2 = R¥ was studied in [2], where
it was demonstrated that if V € L®(R"Y) and V't € LV/?(RY), then there
is a sequence A, — oc (see also [8, 10]). Furthermore, it was shown in [7]
that (2) has a principal eigenvalue whenever V € L¥/P(RN ) LIN+3)/p(RN)
for some § > 0. More references concerning (1)-(2}, in particular to earlier
work on bounded {2, may be found in the papers cited above.

The paper is organized as follows: In Section 2 we prove the existence
of infinitely many eigenvalues of (1). Our argument is fairly elementary
and is based on a simple minimization procedure. We also show that under
an additional assumption on V' the principal eigenvalue of (1) is simple.
In Section 3 we give a few examples demonstrating that our hypotheses
on V are in a sense optimal. Finally, in Section 4 we are concerned with
the nonlinear problem (2). Again, a simple minimization argument shows
the existence of a principal eigenvalue );. However, since the equation is
nonlinear now, it is not clear whether higher eigenvalues can be obtained
by minimization. Therefore we use a different approach, based on minimax
methods in critical point theory.

NoTaTION. B{z,r) and Blr,r] denote respectively the open and the
closed ball centered at z and having radius r. |- |, is the usual norm in
LP(12), D(12) are the test functions in £2 and DFP(£2) is the closure of D(2)
in the norm ||u|| := |[Vulp. A functional x : X — R is weakly continuous if
tun — 1 implies that x{un) — x(u).

2, Eigenvalues of the Laplacian. In this section we consider the linear
eigenvalue problem
(3) —Au=AV(z)u, ueDyN),
where §2 is an open subset of RY, N > 3. Possibly 2 = R¥. Qur basic
assumption is

(H) Vel (), Vt=Vi+V+#0, Vi € LN*0),
lim Jz — y|*Valz) =0 for every y € 2,

Ty

lim |z]*Va(z) = 0.
1 || =00

e 2

In order to find the principal eigenvalue of (3) we solve the following mini-
mization problem:

(P1)  minimize {,, |[Vul? dz, u € Dy (12), (o Vulde = 1.
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We shall use the following notation:

X =D, olu) = S IVul?dz, ¢(w):= S Vu? da.
7 2

LeMmMa 2.1, Under assumption (H), §, Vtu?® de is weakly eontinuous.

Proof. By [20, Lemma 2.13], {, Viu® dz is weakly continuous.
In order to prove that Sn Vou? dir is weakly continuous, let us recall the
Hardy inequality in Dy (RN ):
u2 4 o
——dr < ——— w|® dx.
Sl sy IV
Let u, — u and € > 0. By assumption, there exists R > 0 such that if z € 2
and |z| > R, then |22V, (z) < &. Define

= 0\B[0,R], (%:=0NnB(0,R), c=g—5suplunl.
The Hardy inequality implies that
2
(4) S Voul dz < e S u—’;—dmgsc2,
nl 2 |.‘Z'|
and similarly,
(5) S Vou? dz < ec?.

2]

By compactness, there is a finite covering of 25 by closed balls B [1,71],
.oy Bz, rg] such that, for 1 < 7 <k,

(8) [z — zi| <7 = |2 — 25 Va(z) < e
There exists r > 0 such that, for 1 < j < &k,

o — ;] <r = |z —a;*Va(z) < e/k
Define A 1= U;Ll B[z;,7]. Then by the Hardy inequality,

(7 S Vau? do < ec?, S Vou? dz < .
A A
It follows from (6) that Vo € L®(f2 \ A). Since (2 \ A is bounded,
Vo € LN/2(02, \ A) so that by [20, Lemma 2.13],
(8) S Vaul dx — S Vau? dz.
Z\A A\A

We deduce from (4), (5), (7) and (8) that {,, VouZ dz — §, Voul dz. =
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THEOREM 2.2. Under assumption (H), problem (P1) has a soh.ztz'on
e1 > 0. Moreover, ey is an eigenfunction of (3) corresponding o the eigen-
value Ay = { |Ver|* da.

Proof. Let (u,) be a minimizing sequence for (Py). Since (u,) is bounded
in X, we may assume that u, — 1. Hence we obtain

| [Vulde < liminfj |V |2 dz = inf(Py).
n—0J
2
Since §, V7 uidz = {, V"’ 2dz — 1, the preceding lemma and Fatou’s
lemma imply that SQV u? dz < i, V+u2 dr—1,1e., §,Vulde > 1. It is
then clear that wu is a solution of (P;). Moreover, since also u| is a solution,
we may assume u > 0,

Since for every v € D(£2),
4| pluter)

| vt en)
u is an eigenfunction of (3) corresponding to the eigenvalue {, |[Vu|? dz. w

b

In order to find the other positive eigenvalues of (3) we solve the problems

(P.) minimize {,|Vul?dz, u e Dy (1),
fqVu-Vejde=...={,Vu-Ve,_;dz=0, {o Vulde =1,

where e; is the solution of (F;),1<j<n -1

THEOREM 2.3. Under assumption (H), for every n > 2, problem ()
has a solution e,,. Morecver, e, is an eigenfunction of (3) corresponding to
the eigenvalue Ay =\, [Ven|? d, and Ay, — o0 a8 n — o0,

Proof. The existence of e, is proved as in Theorem 2.2. An elementary
argument (see {19, Lemma 4.44]) shows that e, is an eigenfunction of (3)
corresponding to the eigenvalue A, := {, |Ven|? dz.

The sequence f, = e,/+/An is orthonormal in X so that f, — 0.
Since At = AJM{, [Vin|?dz = {,V fZdz, Lemma 2.1 implies that 0 <
lunnm_,c,o A= llmn_,oos ViZde <0. m

REMARKS 2.4. (a) If -V satisfles (H), then problem (3) has infinitely
many negative eigenvalues 0 > A1 > A_p > ... Moreover, A, — —00 a5
n — co and the eigenfunction corresponding to A_; is nonnegative.

{b) Theorems 2.2 and 2.3 depend only on the weak continuity of
§o V*u?dz and on the weak lower semicontinuity of §,, V=u?dz. It is easy
to formulate an abstract version of these results.

(c} Necessary and sufficient conditions for the weak continuity of
{o Vtude, in terms of capacities, may be found in [13, Section 2.4.2).
We would like to thank A. Laptev for bringing the reference [13] to our
attention.
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In order to prove the simplicity of A; which we mentioned in the intro-
duction, we need the following additional assumption:

(H1)  There exists p > N/2 and a closed subset S of measure 0 in RY
such that {2\ S is connected and V € L (12 §).

THEOREM 2.5. Under assumptions (H) and (H1), Ay is a simple eigen-
volue of (3).

Proof. Let u be an eigenfunction corresponding to A; such that
{oVu?dz = 1. Since |u} is a solution of (P), |u| is also an eigenfunction.
Hence T and u™ are eigenfunctions.

By regulanty theory [12, Theorem 11.7], any eigenfunction belongs to
WEI2\ 8)NCR(2\S), g=2N/(N+2), 0 < & < 2 — N/p. The unique
continuation theorem of Jenson and Kenig [11] implies that 4 = ut or
u=—u". It follows immediately that A; is simple. =

3. Examples and counterexamples. We assume in this section that
2 = RN, The following result, due to Tertikas, is contained in Proposi-
tion 4.5 of [18]:

THrOREM 3.1. Let V € LE (RV)NCHRY \{0}). Ifu is an eigenfunction
of (3), then

(9) | QV(z) +3- YV (2))?(z) dz = 0.
RN
REMARK 3.2. Theorem 3.1 has a simple formal explanation. An eigen-
value of (3) is a stationary point of p/1. If T'(p)u(z) := u(z/p), then

d|  eT{e) _
dol =1 %(T'(o)u)
implies {9) (see (20, Appendix B]).

ExAMPLE 3.3. As observed by Tertikas, if Wi(z) := 1/(1 + |z|?), then
for all z € RY, 2Wy(z) +-2- VWi(z) > 0, and if Wa(z) := 1/(|z]*(1 + |z]?)),
then for all z € BN \ {0}, 2Wa(z) + 2 - VW, (z) < 0. By Theorem 3.1, (3)
has no eigenvalue if V' = W, or V = W),

Now observe that Wi € LI(RN) for all ¢ > N/2, Wy € L¢(RY) for all
q € (N/4, N/2) but neither Wj nor W is in LV/2(RV).

ExAMPLE 3.4. Define

Wa(z) ==

1
(L + [=[*)[log(2 + |2[2)]2/¥”
1
[12(1 + ||2)[log(2 + 1/][2)]2/N

W4(..’L’) =
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By Theorem 2.3, (3) has infinitely many positive eigenvalues if V' = W3 or
W, although Wy, Wy are not in LN2(RNY) (Wy, Wy are in the same L9-spaces
as respectively Wy and W3).
THEOREM 3.5. If [z|2V(z) — o0 as |z| — o0 or |z — y[*V(2) — o0 as
& — y for some y, then the infimum in (Py) is 0 (end is not achieved).
Proof. We only consider the case of |z|>V(z) — oc as & — 0, the other
cases being similar. Let u € D(RY) and set u,(z) := u(z/r). Then
S (Vun(2)?de {an |Vu(z)) de
= e
T Vi@hur (@) de gy (rlal)2V (ra) {1 dx

Since w has compact support and w?/|z|2 € LY{RY), it follows easily that
the right-hand side above tends to 0 as + — C.
In the case of |[z]| — oo the function u € D(RY) should be chosen so that

0 &suppu. m

4. The p-YLaplacian. Qur purpose here is to extend the results of Sec-
tion 2 to the nonlinear eigenvalue problem
(10) —Au = AV(D)|ulf P, weDyP(R),
where Ayu = div(|Vu|P~?Vu) is the p-Laplacian with 1 < p < N and 2
is an open, in general unbounded, subset of RY. The assumption (H) of
Section 2 now reads:
(Hy) VeILl (2, Vi=Vi+W+#£0, Ve IVP(2),

loc
ilg%’ lz — y|PVa(z) =0 for every y € 2, im |z["Va(z) = 0.
zEef? lmm!g.!'?o
Consider the problem
(Q1) minimize {, |VulP dz, u € DyP(2), {, ViulP dz = 1.

It is easy to show that {, V*|u|? dz is weakly continuous in DgP(£2). The
proof parallels that of Lemma 2.1 except that now we use the Hardy in-
equality

|uf?

P

Yy Y 1,

RSN Ei; dx S (F:—p) !\r ]Vu.ip dm, U e DOP(RN)
R

(see [9] for a simple proof).

THEOREM 4.1. Under assumption (H,), problem (Q1) has a solution

e1 = 0. Moreover, ey is an eigenfunction of (10) corresponding fo the eigen-
value Ay == |, |Vey|? dz.

Proof Repeat the argument of Theorem 2.2.
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Since equation (10) is nonlinear (unless p = 2), it: is not possible to obtain

higher eigenvalues by the method of Section 2. Instead we shall use critical
point theory. Let

p(u) = { |VulPdr and 4(u) = { V]uf do.
a 2
Since the set {u € DyP(£2) : () = 1} is not a manifold unless further

assumptions are made on V', we introduce anew space X := {u € Dé"’ (12) :
|ullx < oo}, where

lul% = | [Vul? dz + { V= iul? de.
) 7

Then M := {u € X : ¢(u) = 1} is a C'-manifold, critical points of |y are
elgenfunctions and the corresponding critical values are eigenvalues of (10).

Let 9% (u) .= {, V*|ul? dz.

LEMMA 4.2. If V satisfies (H,), then:

(i) The Fréchet derivative of ¥t is completely continuous as ¢ mopping
from X to X*.

(i) ¥+ (u) < cp(u) for somec >0 and all u e X.

Proof. (i) Let u, — u. By the Holder and Sobolev inequalities,

| va(lun P2, — P *u)vds
n

< ( S Vlilun P2y, |u!p—zu|p/(p~1) d:c) (p——l)/p(S Valol? dm) 1/p
n 17}

= le'U“X( S 1% H'u,n[f’“zun _ |u|p—2ulp/(p—1) dm) (P—l)/p.

i)

It is easy to see that ||un|P~2u, — |u|1"2uip/(p-1) - 0 in IN/N-P) ()
(indeed, otherwise there would exist a subsequence going weakly to some
v 5 0 and a.e. to 0, a contradiction to [19, Theorem 10.36!). Since V1 €
LN/?(12), the right-hand side above tends to 0 uniformly for ||v||x < 1. This
shows the complete continuity of the Vi-part.

Using the notation of Lemma 2.1 and the Holder, Hardy and Sobolev
inequalities, we see that

| Va(lunl"=2un — [ufP~2uv dz < daelv]|x (el + lulf ) < daellv]x-
P21

Similarly, the above integral taken over A is < dye|jv||x (the di’s are indepen-
dent of ). Since {22 \ A is bounded and V5 € L ({22 \ A), it follows from the
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continuity of the superposition operator {14, 20} that |tn [P~ %un, — |[u[P~2u
in I#/(P-1) (25 A) and
S Va(ltn [P 2un — [ulf *u)vdz — 0.
\A
(i) By the Hélder and Sobolev inequalities,

{ Vil do < ds § | VufP do.

2 Q
Fixing some £ > 0 and using the Holder, Hardy and Sobolev inequalities
again, it is easy to see that

| ValulP do < dg | [VulP de,

o) Pe]
and similar inequalities hold on A and 2, \ A. The conclusion now follows
by recalling the definitions of 4™ and ¢. m

Let > 0 and let A, : X — X* be the operator given by

(Ap(u),v) = S |VulP~2Vu - Vodz + u S V'~ |ul|P~ 2w de
n e
({-,-) denotes the duality pairing).

LEMMA 4.3. If un — v and (Au(un), tn — u) — 0, then u, ~» w in X.

Proof Our argument is borrowed from [6] where it appears in the proof
of Lemma 3.3. Clearly, (4, (un) — 4, (u),un — u} — 0. By the Hoélder in-
equality,

V= (funlP2un — JulP~20) (2, — )
e .

V7 {[unl? + |u® = [P0~ ful? ™ 2uuy, )

v

- [(J‘S}Vﬂ n|p)(p—1)/p_ !S?V | |P)(p )/:D}
<[(vtear) " ( [ v-iep) 20
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Since the left-hand side above tends to 0, {, V= |ua|?dz — {, V" |ul? da.

Similarly, {, |Vu,? dz — {, [Vu|P dz. Hence {|un||x — ||u/|x and therefore
Un = uin X.

Let A be a closed subet of M such that A = —A. Recall [14, 16] that the
Krasnosel’skii genus y(A) is by definition the smallest integer & for which
there exists an odd mapping A — R* \ {0}. If there is no such mapping for
any k, then y(A) := +co. Moreover, v(0) := 0. Let

R

Since {z € RY : V(2) > 0} has positive measure, for each n there is a set
A C M which is homeomorphic to the unit sphere S”~! ¢ R® by an odd
homeomorphism. Since ¥(5™~1) = n, there exist sets of arbitrarily large
genus and all A, are well defined. Moreover, A; = inf,car (). Hence )\
coincides with the first eigenvalue obtained in Theorem 4.1 and A, > X1 > 0
for all n. If M is of class C® (which is the case for p > 2) and |5 satisfies
the Palais~Smale condition, then classical critical point theory [16, Section
I1.5] implies that the A,’s are critical values. If 1 < p < 2, then M is only
of class C; however, the same conclusion remains valid as follows from the
results contained in [5] and [17].

As Ay is a critical value of |, there exists a critical point e, with
w(en) = An. Hence ¢'(en) = pip'(en), where p is a Lagrange multiplier,
and (2) is satisfied with u = e, and X = u. Since pp(en) = (p'(en), en) =
p(9'(en), en) = pu, we have p = ple,) = Ay, 80 A, is an eigenvalue and e,
is a corresponding eigenfunction.

THEOREM 4.4. Under assumption (Hp), @|u has a sequence of critical
points (en) with corresponding criticol values A, = {, |Ver|? da. Moreover,
each e, is an eigenfunction of (10), A, is an essociated eigenvalue, and
Ap — OO a8 1 — CO.

Proof. Let (ug) be a Palais—Smale sequence. Then there exist yp € R
such that

(11} @ (ur) — e (ug) — 0
{cf. [20, Proposition 5.12]). Since ¢(uy) is bounded, so is ¥+ (uz) according
to Lemma 4.2(ii), and therefore also

(12) 7 (up) =¥ (u) — 1
is bounded. Hence {jux|% = @(ux)+v~ (ur) is bounded and we may assume

passing to a subsequence that uj, — u. Since {11) is completely continuous,
Pt (ug) — ¥t {u) and it follows from (12} that u # 0. By (11),

plie(ur) — pr) = {0 (ur), ur) — {8 (e ), uge) — 0.
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Therefore (uz) is bounded and we may assume py — . Moreover, taking
the limit above we obtain 0 < ¢(u) < g, so pu > 0. We may rewrite (11) as

A, (ur) — (™) (w) = 0.
Since A, (ur) ~ A, (uz) — 0 as is easily seen from the definition of A, and
since () (ug) — (¥ (w), it follows that A,{(uy) is strongly convergent.
So {A,.(uk), uk — u) — 0 and u; — v according to Lemma 4.3.

We have shown that |, satisfies the Palais—Smale condition. It follows
from our earlier discussion that each A, is a critical value of | and an
eigenvalue of the problem (10). Moreover, if An = ... = Anpm for some
m > 1, then the set of critical points corresponding to A, has genus > m+1
[16, Lemma I1.5.6] and is therefore infinite. Hence the eigenfunctions e, may
be chosen so that e, # e; whenever n # j. Finally, a well known argument
[14, Proposition 9.33] shows that the critical values A, must necessarily tend
to infinity. m

REMARK. 4.5. It was shown in [7] that if 2 = RV and V € LV/?(RV) n
LN+8/2(RNY for some § > 0, then the principal eigenvalue A; of (10) is
simple. ‘

In [15] Rozenblum and Solomyak studied the existence of the principal eigenvalue of
(1) in RY under weak conditions on V. While our hypotheses (on V3) were formulated in
terms of pointwise Hmits, those in [15] involved capacities and conditions on integrals. We
would like to thank the referee for pointing out this reference.
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