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On a class of Markov type semigroups
in spaces of uniformly continuous and bounded functions

by
ENRICO PRIOLA (Pisa)

Abstract. We study a new class of Markov type semigroups (not strongly continuous
in general} in the space of all real, uniformly continuous and bounded functions on a
separable metric space B. Our results allow us to characterize the generators of Markov
transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck
semigroups.

1. Introduction. In this paper we study a new class of semigroups of
bounded linear operators on Cy(E), the Banach space of all real, uniformly
continuous and bounded functions on a separable metric space E, endowed
with the supremum norm || - ||p. We call these semigroups m-semigroups. A
m-semigroup P, is characterized by the following assumptions:

(i) for any f € Co(E) and z € E, the map [0,00[ —= R, t — B f(xz), is
continuous;

(i) for any bounded sequence (f.) C Co(E) such that f, converges
pointwise to f € Cp(E) (we briefly write f, — f), we have P f, & P, f,
t>0;

(iii) there exist M > 1 and w > 0 such that [P;f|lo < Me*t|f|lo, f €
Co(E), t 2> 0.

The main motivation of the paper is the study of semigroups of ker-
nels in infinite dimensions. They arise as transition semigroups of Markov
processes (see Definition 3.5) corresponding to solutions of stochastic differ-
ential equations and representing solutions of PDE’s with infinitely many
variables (we refer to [3], [4], [6], [8], [13], [18], [21], [22], [24]). These semi-
groups, when considered as a family of operators acting on Cy(£2), where 2
is an open set of a separable Hilbert space H, turn out to be m-semigroups.
On the other hand, in several cases the strong continuity fails to hold in
Cy(£2). This happens for instance for the Ornstein-Uhlenbeck semigroup or
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for the semigroup associated with a Dirichlet problem in a half space of H
(see §4).

We define a generator A for a 7-semigroup P as follows (see §3 for
details):

D(A) = {fels(E): Fg€ Co(E), 36 > 0 such that 51]1p | |ALfllo < o0
nE]0,4

and hlin[c)l+ Apflz) = g(z), z € E},
Af(z) = hl_i*l’él_l_ Anflz), feD(A), zek,

where Ay, = h™}(P, — I). Notice that A does not have dense domain in
general. We show that the resolvent operator of A can be obtained by a
Laplace transform of P;, which is pointwise defined in Cy(E).

In this paper there are three main results that we briefly present here,
Let P, be a m-semigroup and let § be any covering of E. We consider the
following operator:

{D(As) ={f e D(A): lim sup |Anf(z) — Af(x)] =0, S €8},
ASf($)=Af($)a z € E.

Our first main theorem (see Theorem 3.7) is a kind of generalization of
a well known result that states that for a Cp-semigroup, the “weak” and
“strong” generators coincide (see for instance [20, Theorem 1.3 of §2]).

THEOREM 1.1. Let P, be a n-semigroup and let S be any covering of E
such that

(11)  lm sup|Pf(z)- @)l =0, FECu(E), S€S.
10t g
Then As = A.

As a corollary, by taking S = {H}, we deduce that if a n-semigroup P
is also a Cg-semigroup on Cp(E), then the generators of P; as a Cp-semigroup
and as a w-semigroup coincide. We apply this fact to the heat semigroup in
C(H), which is a Markov transition Co-semigroup (see Definition 3.5) and
hence a m-serigroup as well. This way we obtain the second main result (see
Theorem 4.1) that provides a new characterization for the generator of the
heat semigroup, extending a classical theorem due to Gross (see Theorem
3 and Corollary 3.2 of [13]}). We also investigate a “natural” locally convex
topology on Cy{E), considered in [11], which induces the m-convergence for
sequences (see Theorem 2.2).

The theory of m-semigroups is a development of Cerrai’s theory of weakly
continuous semigroups (see [5], [6] and Remark 2.4), They were introduced
to study the Ornstein—Uhlenbeck semigroup on Cy(H), whose generator was
defined through the pointwise Laplace transform of the semigroup. The same
approach has been used to define a generator for other semigroups such as
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the Mehler semigroups (see [12]) and the semigroup arising from an infinite-
dimensional Dirichlet problem (see [21]). In Section 4 we show that all these
semigroups are in fact m-semigroups and that their generators can also be
defined through a pointwise limit of Ay f or equivalently through a uniform
limit of Axf on each compact set.

Our theory can be used to study Markov transition semigroups associ-
ated with solutions of stochastic differential equations of more general type
(some results in this direction are contained in [24]).

Since T-semigroups are not strongly continuous in general, a comparison
with other types of semigroups seems to be in order. A way to treat the lack
of strong continuity for a semigroup is to find a suitable linear locally convex
topology weaker than the norm topology of the underlying Banach space
but more appropriate for the semigroup. Let us remark that the classical
Yosida approach (see §1X.3 of [23]) in the treatment of semigroups of linear
operators on locally convex spaces does not work in our case. Indeed, it
requires that the locally convex topologies are sequentially complete (see
Claim 4 in the proof of Theorem 2.2).

Several papers about semigroups on general locally convex spaces are
available in the literature (see {16], [17] and the references of [16]). On this
subject we show that w-semigroups are weakly integrable semigroups in
the Jefferies sense (see [16], [17] and Remark 3.10). However our approach
is different and simpler. In order to treat w-semigroups, we do not utilize
weak Pettis type integration and do not have to consider the properties of a
particular locally convex topology on Cy(E), which is difficult to characterize
(see Theorem 2.2). We will only work with the norm topology in Cp{E).

We consider connections with the class of integrated semigroups, which
has been intensively studied (see for instance [1], [15]). We point out that
any generator of a 7-semigroup is the generator of an integrated semigroup
on Oy (E) as well (see Remark 3.9). However our results do not follow from
the general theory of integrated semigroups.

Finally, one can consider analytic semigroups T; on & Banach space X
(i.e. the map ¢ — T} is analytic in ]0,co[ with values in £(X)) without
requiring the strong continuity at ¢ = 0. This theory is developed in the
book [19] by Lunardi to systematically treat parabolic PDE’s in finite di-
mensions. Unfortunately the Ornstein-Uhlenbeck semigroup is not analytic
in Cp(R"™} (see [7]). In infinite dimensions the situation is worse, even the
heat semigroup is not analytic in C,{H) (see [14]).

In the last section we show that the theory of m-semigroups can also be
developed on BC(FE), the Banach space of all real continuous and bounded
functions on B, endowed with the supremum norm. Notice that many Mar-
kov transition semigroups, such as the heat semigroup, are not strongly
continuous on BC(H).
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In forthcoming papers we will consider the Cauchy problem for m-semi-
groups and provide a Hille-Yosida type theorem. Some results in this direc-
tion as well as various remarks and details about w-semigroups are contained
i [22].

2. Basic concepts. Let (E,d) be a separable metric space with metric
d. We denote by Cyb(E) the set of all real, uniformly continuous and bounded
functions on 5. We consider Cy(E) as a Banach space endowed with the sup
norm: || f]lo = supgez | f ()], f € Cu(E). A sequence (fn) C Cu(F) is said to
be w-conuergent to a map f and we write f, I, f as n — oo if the following
conditions hold:

(a) fe€lu(E), sup I Fnllo < 003

() lim fule) = f(2),

Similarly, let J be a real interval and TeJ Let FoJ\{t} — Co(B).
We say that F(t) 5 f as t — ¢ if for any sequence (tp) C J\ {£} that
converges to t we have F(t,) — f as n — occ. This implies that there exists
a neighborhood U of ¢ such that supyern gy 1 F (8o < oo

Let us remark that m-convergence for sequences of real bounded Borel
functions is considered in the theory of Markov processes; for instance in
the book [11] by Ethier and Kurtz it occurs as bpc {(bounded pointwise
convergence). Now we introduce 7-semigroups on Cu(B).

(2.1)

rz e k.

DEFINITION 2.1. Let P;, t > 0, be a semigroup of bounded linear opera-
tors on Cp,(E), that is, Py = I and Py, = PP, for t,8 2 0. ‘We say that P,
is a mw-semigroup on Cy(E) if the following conditions hold *):

(2.2) (i) there exist M > 1 and w > 0 such that || Py/|z(c.2)) < Me“t t > 0
(ii) for any = € E and f € Cp(E), the map [0,c0[— R, ¢ — P, f(z), is
continuous; ‘
(i} for any (fn) C Co(B), fn = f implies that Py f, T Pyf asn— 00,
for allt > 0.

Let us remark that condition (i) is equivalent to requiring that the semi-
group P is locally bounded (i.e. for any T > 0, there exists a constant Cr
such that ||| cc,(zy) < Cr t € [0, T]). The proof is standard.

Let P; be a T-semigroup. We define the fype of P, as the real number

w = inf{o > 0 : there exists My > 1 with || P|| c¢c, () € Mae™, ¢ > 0}

(*) Let (X, |l ||x) and {¥,] - {|¥) be two real Banach spaces. L{X,Y) stands for
the Banach space of all bounded linear operators from X into Y7, endowed with the
norm ([T zox,v) = SUP|afix <1 [ Tally, T € LIX,Y). We also set £(X) = L(X,X),
X'=£X,R) and |- = |lx
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Let E be infinite and & = {5;};c; be a nontrivial covering of E, i.e.
S; C B, i €1, E =|J;; S; and there exists S;, € § that is infinite. In the

sequel we also consider m-semigroups P; that satisfy the following additional
condition:

(2.3) Jm, sup|Pif(z) — f(z)| = 0, feCy(E), S8,

Notice that in case P satisfies (2.3) with § = {E}, it is also a strongly
continuous semigroup on C,(£). m

Clearly m-convergence of sequences of functions does not define a unique
topology on Cp,(E). However, there exists a “natural” locally convex topol-
ogy mo on Cp{E) that induces the m-convergence for sequences (see [11]
pp. 495-496, and Remark 2.3). In the next theorem we show that v, can bé
defined in a different way, based on an embedding result concerning Cy,(E)’
of independent interest (see Claim 1 in the proof of Theorem 2.2). Moreover
we prove that 7y is neither sequentially complete nor metrizable.

We fix some preliminary notations. We consider M(E), the linear space
of all finite Borel signed measures on E. Let p € M(E). By the Hahn—
Jordan Decomposition Theorem, 4 = fi4. —p—, where py and . are positive
measures, Moreover the variation of y is |g| = fuq. + pp.. It is straightforward
to verify that M(F) is a Banach space endowed with the norm |jula =
|ul(E), b & M(E).

Let X be a Banach space and Y be a subspace of X’. The locally con-

vex topology o(X,Y) is the weakest topology on X making ecach € ¥V
continuous.

THEOREM 2.2. The space M(E) can be considered as a closed subset of
Cu(E)'. This way the Hausdorff locally convex topology 7o = o(Co(E), M(E})
on Cy(E) satisfies:

(%) Jor any (fn) C Cu(B), fn converges to f &€ C,(F) with respect to
Ty fﬂ. "'7:" f

The topology Ty ts not metrizable and not sequentially complete.
Proof. The proof is split up into several parts.
CraM 1. (M(E), || - lr) is isometrically embedded in (Co(E), |- 1)
Consider the map F ; M(E) — C,(E)" defined by

(24) ( ﬂl-*a.f) = S f(y)#’(dy): “EM(E): J €Cu(E).
E .

We assert that F' is an isometry. It is evident that ||Fu|" < {|ujla for any

b € M(E); let us prove the converse inequality.
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For this purpose fix a u € M(E), pt = p4 — . There exist two Borel sets
A+ and A_ such that A+ NA. = @, A+ UA_ = F and M+(A+) = M+(E),
p-{A.) = p(E).

Fix £ > 0. By a property of finite Borel measures (see for instance The-
orem 4.3.7 of [2]), we can choose a closed subset of E, C_ C A_, such that
u_(A_\C_) < . Now the crucial point is to show that there exists a closed
subset of E, O+ C A.., such that

(2.5) (A \Cr)<e and (4 and C_ are separated

(ie. d(Cy,C-) = infaecy,yec. d(z,y) > 0). We first take a closed set
C ¢ Ay such that py(A: \ C) < /2. Then we consider a sequence of
closed sets defined as follows: C, = {z € C: d(2,C_) 2n7 1}, n> 1.

Now we prove that p.(B,) — 0 as n — oo, where B, = ¢\ . We
have B, | By (i.e. Bpt1 C By, and [),,» Bn = Bo). Since CNC.. = 0 we
get By = 0 and so u..(C\ Cn) — 0 as n — co. Hence there exists ng such
that . (C'\ Cp,) < £/2. Thus (2.5) is proved by setting Cy = Cy,. Indeed,
d(Cpy,0-) > ny' and

p AL\ Cng) £ pp (AN C) + pp (O Cry) <&/24 /2 =€

Consider the Borel map g = T4, —Ia_ (*). It is clear that {5 a(y) u(dy)
= |p|(E). Since C and C.. are separated closed sets we can take a map
f € Co(E) such that |fllo =1, f(z) =1ifz e CL and flz) = —1ifz e C_
(for instance set f(z) = [d(z, C_)+d(z, CL)] " d(z, C_)—d(z,Cy)], = € E).
We can verify that

H () uldy) — | ou) ‘ S]f(y) 9(w)| lul(dy)

B B

= | o) -s@lu-@)+ | [f@) -9 p-(dy) < e
AL\Cy A_\C-

Therefore || FL||" > (Fi., f) = {gpo(y)u(dy) — 4 = |p|(E) — 4¢. By the
arbitrariness of ¢ we conclude that ||EF,|" 2 ||| am. Thus F' is an isometry.

CramM 2. 1y = o(Cy(E), M(E)) satisfies condition ().

For any = € E we denote by §, the Dirac measure with support {z}.
Notice that 7 is a Hausdorll topology, since Dirac meagures separate the
elements of C,(E).

We prove property (*):

<= It is clear, by the Dominated Convergence Theorem.

= If f, — f with respect to 79, then using the Dirac measures we
immediately conclude that limp.— o fu(z) = f(z), x € E.

(*yForany BC B, Ig{z)=0ife ¢ B, Ig(z)=1ifz € B.
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Assume by contradiction that sup,,-, || fnllo = oc. We can suppose that
il —eo fnu(2) = 0, z € B, and that f, > 0.

Since (fn) is not uniformly bounded, there exists a subsequence, denoted
by (fx), and a sequence (xy)p>1 C E such that fi(zx) > 2%, k > 1. Now
consider the measure po defined by po(B) = Y52, 27%4,, (B) for any Borel
set B in E. It is simple to verify that pg € M(E). Moreover we have, for
any k > 1,

§ Fv) moldy) 2 275 Frly) 6o (dy) = 27" fu(za) 2 1
Thus fr cannot converge to 0 with respect to 7y and we have obtained a
contradiction.

CLAIM 3. 1 ¢s not meirizable.

Actually it is possible to prove that 7y does not satisly the first countable
axiom, even if B = R. We use the following theorem: if X is a Banach space
and the topology o(X,X') satisfies the first countable axiom then X has
finite dimension. For the proof we refer the reader to §II, p. 10 of [9].

Let us remark that the previous result also holds, with the same proof, if
the topology o(X, X'} is replaced by o(X,Y’), where Y is a closed subspace
of X'. Now to conclude one observes that, by Claim 1, using the isometry
F, M(E) can be considered as a closed subset of Cy(E)'.

CrAaIM 4. 1y is not sequentially complete.

Actually we are able to prove a stronger statement: any locally conver
topology T on Cu(E) satisfying condition (x) (with Ty replaced by T) is not
sequentiolly complete.

Denote by I' the family of all seminorms on Cy(E) which are continuous
with respect to 7. We say that (fn) C Co(E) is a 7 Cauchy sequence if

lim. bup q(f,H_k —f.)=0 foranygel.

T mo

We fix ¢ € F and introduce the functions fn(m) = exp{—nd(z,e)], v € E,
n 2 1. It is clear that (ﬁn) C Cy(F); we prove that it is a 7-Cauchy sequence.

Assume otherwise. Then there exist ¢ > 0, § e I and a sequence of
mtegcw (kn) quc*h that &( o thon ™ fn) > & for any n > 1. Hence the sequence
On = fn-|- fn cannot converge to 0 € Cp, (F) with respect to 7.

We obtain a contradiction by showing that §, does T-converge to 0 as
n — oo. Notice that by (*), g T-converges to 0 if and only if G, — 0 as
n — oo. Now since

Zin(:c) = Eﬁnd(m’a')(ﬁ_k"d(m’a) - 1)7 Ta E, n = 17
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we have |[gnllo € 1, n > 1. Let us consider the pointwise convergence of
Gn- If 2 = a, then g(a) = 0 for any n > 1. If z # a, then since |G, (z}] <
exp[~nd(z,a)] for n > 1, we find that limp—.cc §n (2) = 0. Therefore g, = 0
as n — oc. It follows that (ﬁ) is a m-Cauchy sequence.

Now notice that lim,_, . fn(:c) = Ity (z), € E. Thus (ﬁl) is not 7-
convergent to a map in Cp(F). It follows that T is not sequentially com-
plete. =

REMARK 2.3. We briefly comment on a different approach that can be
used to define the topology 7p (see [11]). Consider the Banach space (M(E),
|| - [|a4) and its dual space M(E)’. The space Cp,(E) can be identified with
a closed subspace of M(E) by setting (f, u) = §, f(y) u(dy), [ € Cu(E),
# € M(E). Indeed, by considering Dirac measures, it follows that ||fljo =
supum<t il = | fllmzy. € Cu(EB).

The topology 7y coincides with the restriction aq of o(M(E), M(E)) to
Cp(E}. Indeed, 1 and oy determine the same class of convergent nets. In
[11], pp. 495496, the restriction v of o(M(E), M(E)) to the space of all
real Borel bounded functions is considered; it is also proved that ~ induces
the w-convergence for ‘sequences.

Given a w-semigroup P; on Cp(E), by the previous theorem it follows
that P; is a semigroup of linear operators which are sequentially continuous
on Cy(E) with respect to 79. In this paper we will not investigate if the
operators P, ¢ > 0, are actually 7p-continuous on Cp(E) or not. Thus we
only consider on C,(F) the sup norm topology.

REMARK 2.4. The theory of m-semigroups is a development of Cer-
rai’s theory of weakly continuous semigroups (see [5] and [6]), where =-
convergence for sequences in C,(E) is replaced by the uniform convergence
on each compact set of E (the “K-convergence”) and some additional hy-
potheses are required. Any Markov transition semigroup (see Definition 3.5
for a precise definition) which is weakly continuous in Cerrai’s sense is a
m-semigroup.

REMARK 2.5. We make some comments on the choice of the space E.

(a) In case E is also a compact set, in order that s semigroup P of
bounded linear operators on Cy(E) is a m-semigroup and also a strongly
continuous semigroup, it is enough that P, satisfies the following two con-
ditions:

(i) there exist M > 1 and w > 0 such that || Pl z(c,m)) € Met, £ > 0;

(ii") for any « € E and f € Cu(E), limy_ o+ B f(2) = F(2).
'To see this, first remark that, by the Riesz theorem, Cy,(E)' can be iso-
metrically identified with M(E). Then the assertion follows by combining
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Theorem 2.2 and [23, §IX.1] (“weak equals strong”) (see Remark 2.1.5 of
[22] for more details).

(b} Suppose that E C X, where X is another separable metric space;
then it may happen that a semigroup P; of bounded linear operators on
Cu(E) is a sr-semigroup on C,(E) but not on Cy(E) (see for instance the
semigroup in §4.2). Notice that this is impossible for strongly continuous
gemigroups.

3. The generator of a m-semigroup

DerNtTioN 3.1, Let B, be a m-semigroup on Cu(E). We set Ap =
WPy — I), b > 0, and define its infinitesimol generator A : D{A) <
Cr(E) — Cu(E) as follows:
(3.1) D(A) = {f € Cy(E) : 3g € Cu(E), Ahf-ﬁ)ga.sh—->0+},

' Af(x) = limpor Anf(z), f€D(A), z€E.

Let now £ : D(L) C Cp(E) — C,{E) be a linear operator. We say that £ is
w-closed if, for any (f,) C D{L), the following condition holds:
(3.2) Jo > foand Lf, Dgasn—oo= feD(L)and Lf =g

A subset C' < C,(E) is said to be w-dense in C,{E) if, for any f € Cy(E),
there exists a sequence {f,) C € such that f, = f asn — co.

Some basic properties of generators of m-semigroups are stated below.

PROPOSITION 3.2. Let A be the generator of a w-semigroup P, of type w
on Ch(EY). Then, for any f € D(A), we have

(i) P.f € D(A) and AP f = P,Af, £ > 0;

(ii) for any z € E, the map [0,00] — R, t — P;f(x), is continuously
differentiable and (d/dt) P f(z) = P.Af(z), t = 0.

Proof (i) Fix f € D(A) and ¢ > 0. There exist K > 0 and § > 0 such
that [|Anfllo < K for any h € ]0,6]. Then {|Pidnfllo £ MKe, h € 10,6],
and applying Definition 2.1(iii), we find

hh% ApPif() = }“If)lk P ALf(z) = PAf(z), =€BE.
et ()1 et 01

Thus P,f € D(A) and AP, f = PAf.

(i) Fix f € D(A), z € E and consider the map ¢ — P, f(z). The right
derivative (dV/dt) P f(z) = P.Af(x) exists at any £ > 0. Moreover the map
t > PyAf(z) is continuous and so, by a well known lemma of Real Analysis,
we obtain the assertion. =

To proceed with the study of generators of m-semigroups, we need a
preliminary lemma. It is basic for the treatment of w-semigroups on Cv(E).
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LEMMA 3.3. Let (Y, 1) be a measurable space (u is o finite, positive and
complete measure). Consider a function F:Y X E — R that satisfies:

(i) F{., &) is measurable for any x € E;
(ii) F(y,-} is uniformly continuous, for p-a.e. y€Y;
(iii) there emists g 1 ¥ — R, p-integrable such that |F(y,x)| < g(y) for
allz € E and p-a.e. y €Y.

Then the map h: E — R,
h(z} = S F(y,zx)u(dy), =€k,
Y
15 uniformly continuous and bounded.

Proof The boundedness of h is clear, as is its continuity by the Domi-
nated Convergence Theorem. Let us prove the uniform continuity of h. For
any n > 1, we consider the set A, = {(z,2') € Ex B :d(z,z") < 1/n}.

To verify the assertion, we prove that
(3.3) lim sup |h(z) - h(z)] =0.

0 (3,5 ) € A
For any n > 1, choose a countable dense set D, in A, {(thanks to the
separability of E x E). Then for p-a.e. y € Y we have
sup !F(y: SC) - F(y,ﬂ;")' = sup !F(ya .’L‘) - F(y:$,)|= n =1,

(z2')EAn (,2')€Dy
since for y-a.e. y € Y, |F(y, z) — F{y, «')| is uniformly continuous on E x E.

Now we remark that, for any n > 1, since D,, is countable the map

Y — R: Y sap |F(y,m) _F('y:wl)l:
(m;m’)EDu
is measurable. Moreover, sup(, o1yep, |Fly,2) ~ Fly,«")| < 2¢(y) for all
n > 1 and p-a.e. y €Y. Thus we get, for any n > 1,
(3.4) sup h(@)—az) < sup | |F(y,z) - Fly,2")| pldy)

(m,z’)€ 2,2 )€ An

< S sup |F(yvm) - F(ya wr)
y (%2 )E0n

w(dy).

Now letting n — oo in the last term, by the Dominated Convergence Theo-
rem, we find (3.3). m

ProrosrTion 3.4. Let A be the generator of a m-semigroup Pg of type w
on Cp(E). Then;

(1) D(A) is m-dense in Cy(E);
(i) LA is-a m-closed operator on Cp(F).

Muarkou type semigroups 281

Proof. Fix any f € Cu(E) and consider for any ¢ > 0 the maps
t
E—-R z— SPSf(a:)ds.
0
By Lemma 3.3, they belong to Cy,(E). Let us prove that they belong to D(A)
for any ¢ > 0. First note that
¢ ¢
(35)  Pu(JRS()ds) @) = | Prsefla)ds, @B, t20,h20,
0 0
since Sg P, f()ds is the m-limit of a sequence of Riemann sums in C,(F).
Then by standard computations (see for instance [20]), we obtain the asser-
tions.

Let us review the important class of Markov transition w-semigroups.
We also consider Dynkin’s weak generator which is used in the treatment
of Markov transition functions and which is similar to our generator of
m-semigroups (we refer to [10, Chapter I1, §2 ] for more details).

DerINITION 3.5. A semigroup T3 of bounded linear operators on By, (E),
the space of all bounded, real and Borel functions on E, is a Markov tran-
sition semigroup if it can be represented as follows:

Tif(z) = | fW)p(t 2, dy), feBo(E), z€E, t>0,
E

where p(t,z, B), for ¢ > 0, B a Borel subset of E and =z € E, denotes a
Mearkov transition function on E. I the transition semigroup T; on By (E)
satisfies the additional conditions:

(v) for any 2 € E and f € Cu(E), the map ¢ — T3 f(x) is continmous,

(vi) (0, (E)) C Cu(E), t 20,
then the restriction of Ty to Cyp(E) is a m-semigroup. We call it a transition
T-semigroup on Cy(E).

Civen s Markov transition semigroup T on B, (E), Dynkin introduces
the space BY(E) = {f € By(E) : limyno+ Tt f(z) = f(z) for z € B}.

Moreover ho defines the weak generator Aof Ty by setting D{A)= {f €
By (E): there exists g € BY(E) such that lny_o+ t 7T f(2) — f(2)] = g(z)
for z € B, and there exists & > 0 such that [t [Ty f ~ fllo £ M for any
t€10,48]}. For any f € D(A),

Af(@) = lim +7'[Lf(z) - f(a)l, @€ B,

Let P, be a n-semigroup on Cy,(E) such that [Pz, < Me™ for
t> 0 with o € R and M > 1. Consider the operators (Fi)ase defined as
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follows:
o0

(3.6) Faf(z)= | e ™Puf(@)du, [EC(B), € E, A>o.
0

By Lemma 3.3, we deduce that (F) is a family of bounded linear operators
on Cp(E). Moreover | Fy fllo < M (X~ a)~Y||fllo for f € Co(E) and A > o.

Let A be the generator of P;. By Proposition 3.4, we know in particular
that A is a closed operator. Next we characterize the resolvent operator
R(X, A) of A

PROPOSITION 3.6. Let B, be a w-semigroup with generator A such that
| Pellzieu(my < Me® fort > 0 with o € R and M > 1. Congider the
operators (F)\)xsq defined in (3.6). Then, for any A > o, we have

(i) R(X, A) = F\ emists;

(if) [[B(A A" ooy < M/(A—a)" n 2 1.

Proof. (i) First we prove that for f € C,(E) and A > a we have
F\f € D(A) and
(3.7) (A= MRS = f.

We fix f € C,(E) and A > a and define the maps g = F)\ f and gr, gr(z) =
Sg e~ P, f(z)du, z € B, T > 0. We obtain

= =]
. : a—A —
(3.8) Jim {gr —gllo < lim Mi|f{lo ;e( " du = 0.

Taking into account that Prgy(z) = Sg e P nfz)duforz e E, T >0
and h > O (since gr is a m-limit of Riemann sums in Cp(E)) we have

P, -1 17
39) Angle)= (BT )ow) = § | e Pusnf(e) = Pus (ol

0
=N f{z, h) = Iz, k)

where
Mo 1

h

Iif(z,h) = | =P, f(z) du
0

BV
Tof(z, h) = ETSE)‘“wa)du, zeE, h>0.
0

It follows that

14ngllo < M lloe [-—’\—+e] helo,il.
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Farther
(3.10) i sup [T f(h, 2) = Ag(a)] = 0.
Concerning the second term I'; f(h, z) we find, for any z € E,
h
1
(3.11) (D f(h ) — f2)| < |Tof(h, o) ~ 7 | () du
0
/\h h \
< S {e P ) - fla)l du
0
AR B
+Fi S (e~ 1du,
0

which tends to 0 as h — 0%, since lim;_,g+ P.f(z) = f(z), z € E.

Thus we have verified that Ayg = Ag — f as h — 07 and consequently
g€ D(A) and Ag = Ag — f. It follows that (A — A)F\f = f.

Now assume that ! € D{A). We claim that Fy Al = AFy! for A > . This
fact and (3.7) will imply that F(A — A)] = . We have

PAl(z) = ‘ e NP, Al(z § e~ M AP,I(z)d
0 0
[}

S e M PI(x) du = AR\I(z), =z € E.

We have used formula (3.8) and the fact that 4 is a m-closed operator on
Cuw(F). Thus we have proved that R(}, A) exists for A > « and

X
(3.12) R\ Af ()= | e™Pufl@)du, feC(E), z€E.

0

(ii) From (3.12) in a standard way {differentiating with respect to A and
using induction) we can obtain, for any f € Cu(F), n > 1, and A > a,
o

(_ml—ﬁ jurte P f@)du, zeb,
n-1) 2

and now (ii) easily follows. m

(3.13) R(A, A)"f(z) =

Let now S be a nontrivial covering of E (see Definition 2.1) and P; be a
m-semigroup. We consider another linear operator As : D(As) C Co(E) —
Cy(E), defined as follows:

D{Ag) = {f € D{A) : forany S € S,
(3.14) Ky o+ SuDges |Anf () — Af(z)] = 0},
Asf(z) = Af(z), feD(As), z€E.
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The proof of Proposition 3.6 can be suitably adapted in order to prove the
main result of this section.

THEOREM 3.7. Let P, be a m-semigroup in C,(E) of type w (denote by A
its generator) and let S be a nontrivial covering of E. Suppose that formula
(2.3) is satisfied by S and Py, Then As = A.

Proof Since .4 is an extension of 45, we only have to prove that
D(A) C D(As).

To this end, fix ¢ € D(A) and A > w. Define f = (A — A)g so that

oo

Se*A“Pf x)du, x€EB.

We prove that g € D(As) and Asg = g — [

Tix § € S and take into account the proof of Proposition 3.6(i). With
the same notations we have Apg(z) = [1f(h,z) — Daflh,z), z € E, h > 0.
It follows that

(3.15) sup {Ang(z) — Agla) + f(z)]
< sup | Ty f(x, h) — Ag(x)| + sup |[Iof (2, A) — f2)].
zed foy=pod

Now by (3.10) we know that limy_.o+ supgeg |11 F(z, b} — Ag(z)| = 0. Con-
sider the second term of (3.15):

(3.16) sup {2 f (=, h) — f(z)|

e}‘h h ~ il _
< | P (@) — o)l oS | e —
T SO 0
which tends to 0 as A — 0", since limy, g+ supyegs |Pof (@)~ f(z)| = 0 by our

hypothesis. n

The next result provides a useful characterization for the domain of a
Markov transition Cy-semigroup on Cy{E).

COROLLARY 3.8. Let P, be a w-semigroup on Cn(E) with generator A
Suppose in addition that it is a strongly continuous semigroup on C,(B) and
denote by Ag its generator. Then 4 = Ag.

Proof. We can apply the previous theorem with & = {E}. m

We conclude the section by making & comparison with other classes of
semigroups.

REMARK 3.9. We consider integrated semigroups (see for imstance [1]

and [15]). By Proposition 3.6, invoking [1, Theorem 4.1], we can state the
following result:
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Let A be the generator of a w-semigroup Py on Co(E). Then A also
generates a once v‘nicqmted semigroup S; on Cy,(E). Moreover, for any f €

D(A), we have Syf = SOP fdr (the integral is considered in the strong
sense).

ReMaARK 3.10. Here we show that any w-semigroup P, on Cu(E) is a
weakly integrable semigroup on Co{E) in the Jefferies sense (see [16] and
[17]). To this end we verify the Jefferies initial assumptions (51) and ($2).

Denote by (-, -) the duality between Cy(E) and C,(E)' (the topological
dual of Cy(E)) and consider the space

A(B) = {£ € CL,(E) : for any (un) C Co(E), tn S uasn — oo
implies that lm (£, u,) = (£, u)}.

It is possible to verify that A(E)} # C,{E) evenif F = R. A(E) separates the
points of C),(F) and, by Theorem 2.2, M(E) ¢ A(E). Moreover one verifies
that A(E) is an invariant subspace with respect to the dual semigroup P;:
Co(E) — Cp(E), t > 0, and so hypothesis (S1) is satisfied.

Consider hypothesis (52). For any £ € A(E) and f € Cu(E), one can
check that the map Ry — R, & — (P.f,§), is continuous. Then for f € Cy(E)
and A > w, we set g = R(\, A)f (where A is the generator of P, and w its
type). We have

(3.17) (9,€) = ?e")‘“ (Puf &) du, &€ A(E).
Indeed, consider, for any CI(“J > 0, the map g defined by
gr(z) = fe"’\“Puf(m) du, z€k.
Then gr € Cy(E) and gr is : m-limit of Riemann sums in Cy,(E). Hence
T T

Jer e (puf €y du={ (e P du,€) = (gr &), T>0.

0 0
Now letting 17—~ oo, we get (3.17), since gy — g in Cp(E) as T — oo.
Thus formula (3.17) holds and (52) is veriied. Hence we can say, using the
Jefferies terminology, that Py is a A(E)-semigroup on Cy(E).

4. Examples of m-semigroups. This section is devoted to describ-
ing some basic transition m-semigroups (see Definition 3.5) connected with
PDE’s with infinitely many variables. Previous results will be applied to
give a detailed characterization of their generators.

H stands for a real separable Hilbert space with inner product (-, Y and
norm denoted by | - |. @ will be a positive (i.e. nonnegative and one-to- one)
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self-adjoint trace class (or nuclear) operator en H (Tr(Q) will denote the
trace of Q).
Fix once and for all an orthonormal basis {ex }z>1 of H that diagonalizes
Q. For any « € H, Qz = Y _po; AeZrer with 2 = (T,ex), A > 0, k> 1.
We also consider the Gaussian measure N (z, Q) on H, with meanz € H
and covariance operator t@, t > 0 (we refer to [8] for more details).

4.1, The heat semigroup. We define the heat semigroup Oy on Cy(H),
associated with the operator @, by

41)  Ouf(@) =\ flz+N(0,tQ)dy, [feCo(H), x€ H, t>0.
H

It is well known that it is a strongly continuous semigroup on Cy(H). Oy is
clearly also a transition m-semigroup. In order to characterize its generator,
let us first review some function spaces related to Oy,

CH(H) is the set of all f € Cy(H) such that:

(i) for any v € H and © € H, the directional derivative of f at 2 in
direction Q*/?v exists; we denote it by Dgia, f(z);
(i) for any = € H there exists Dgf(z) € H such that

DQU?vf(a:)m (DQf(m):U)a 'UEH;
(iii) the mapping H — H,  + Dgf(z), belongs to Cp(H, H) (3).

It is easy to prove that, defining the partial derwatives Dy f = D, f,
k> 1, for any f € C5(H) we have

Dof() =Y/ Ap Difle)es, =€ H.
k=1

CE(H) is the set of all functions in C}(H) such that:
(i) for any v € H and z € H, the directional derivative
Do f(z +sQ**v) — Do f(x)

3

D, (Dof)(@) = lim_

exists;
(i} for any z € H, there exists D?Q f(z) € L(H) such that

Dgiay(Dof)(2) = Do f(w)(v), v e H;
(iif) the map H — L(H), = — D3 f(z), belongs to C, (H, L(H)).

in H

(%) Let (B, ] - llz) and (F,|| - ||=} be two Banach spaces and 8§ C E. We denote by
€, (5, F) the Banach space of all uniformly continuous and bounded functions from S into
F, endowed with the usual sup norm || f|lo = sup,¢ g || F{2)!|F-
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Setting De, (Drf) = Drif, h,k > 1, we can easily see that

(D?Qf(a:)u,v) = Z VARMDpe f(z)ugvn, ze€H uveH, fe C%(H)
hyje=1

In a similar way it is possible to define the spaces C5(H) and the dif-
ferential operators Df, for n 2 3, and also CF(H) = (5, CH(H). Every
CH(H ), n 2 1, turns out to be a Banach space, endowed with the norm

£l = Fllo+ > I1DSfllo, £ € CH(H).

=1

Some comments about the above spaces are in order. The space Cclq (H)
has recently been introduced by Cannarsa and Da Prato [3]. The spaces
C3(H), n 2 2, are introduced in [21]; they are a slight modification of those
considered in [3].

The spaces C3{H) are related to the differentiability along the repro-
ducing kernel space of the Gaussian measure N(0,@). This type of dif-
ferentiability was considered by Gross in the more general setting of the
abstract Wiener spaces (we refer to [13] and [18] for a detailed exposition).
Hy = QY/2H is called the reproducing kernel of N (0, @); it is a Hilbert space
endowed with the inner product (u,v)s, := (@~ ?u, @~ v)g, u,v € Ho.
If p, = N(0,tQ), t > 0, and i : Hy — H denotes the natural embedding
then (Hy, H,1) is an abstract Wiener space with Wiener measure p;.

Now it is not difficult to verify that C5(H) coincides with the space of all
functions g € C, (H ) such that g is Hp-differentiable on H in the Gross sense
(see [13, §3]), and the Hp-derivative Dy, g is in Cy(H, Hp) (we only remark
that Dy, f(z) = Q*Dgf(z), f € Ch(H), © € H). The same happens for
higher order Hy-derivatives (an analysis of these connections is given in [22,
Appendix A]).

L£1(H) stands for the subspace of L{(H) of all trace class operators. It is
a Banach space endowed with the norm ||T|ly = Te(vT*T), T € Ly1(H).

Let us introduce the following linear operator:

D(Ap) = {f € CH(H) : D} f(z) € L1(H) for z € H, and
D3 f € Co(H, L1(H))Y;
Ay : D(Ag) = Co(H), Ao (@) = Tr[D ()],
feD(Ay), z € H.
In terms of the orthonormal basis {ex}x>1 we have, for any f € D(Ag),

(4.2)

Aof(z) = DR f(z)] = L3 MDwf(e), ek
k=1 ’
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We denote by Ag the generator of O, when considered as a Cg-semigroup,
and by A its generator as a m-semigroup on Cy(H). By Corollary 3.8,
A = Ag. Using this fact we prove the main result of this section. It asserts
that D{Ag) is a core for Ag.

THEOREM 4.1. Let Oy be the heat semigroup on C,(H) defined by (4.1)
with generator A. Then:

(i) A is an extension of Ag;
(i) D{Aq) is dense in D(A) with respect to the graph norm.

Proof. Statement (ii) follows from (i) and [13, Theorem 3 and Corollary
3.2]. Let us prove the first assertion.

(i) Fix § € D(Ap). We have to show that § € D(A) and Af(z) =
Agf(m), x € H. We split up the proof into several steps.

STEP 1. Denote by P* : H — R", n > 1, the finite-dimensional projec-
tions P = Y ., mpey, © € H.

Let us introduce, for any n > 1 and ¢ > 0, the approximating operators
Op : Cy(H) — Cu{H), defined as follows:

43)  Opf(z) = | fla+ Py)N(0,1Q)dy, fe€Cu(H), z€ H.

H
It is easy to check, using the standard properties of Gaussian measures,
that OF is a strongly continuous semigroup of bounded linear operators on
Cy(H), for any n > 1. We now prove that OF f — Oyf in C,(H) as n — oo,
uniformly in ¢ on bounded sets of [0, 00 (a similar statement is proved in
(4, Theorem 3.1]).

Let f € Cp(H), T > 0 and denote by wy the modulus of continuity of f.
We have, for any n > 1 and ¢ € [0, T,

(4.4) sup |07 f(m) — O f ()]
< sup VIf(@ +VEP ) = flo +VEY)IN (0, Q) dy

H
< §wp(VEIPmy = yDN(0, Q) dy < § we (VT [Py ~ y )N (0,Q) dy.
H "
Notice that the map H — R, y — wg(ly]), is continuous and bounded.
Letting n — oo in the last term of (4.4), we obtain the assertion by the
Dominated Convergence Theorem.

SteEP 2. We verify that

——O"f(:c) O?(ZAkaJ) (z), zeH, t>0
k=1
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Fix z € H. Differentiating (4.3) with respect to ¢ and using the standard
properties of Gaussian measures, we obtain

@5 ZOrfie) =

ey
;IL
o

STEP 3. We set

mn

Fu(w)=) MeDif(z), n21, zeH.

k=1

We prove that (F),) is a sequence of uniformly bounded and equi-uniform-
ly continuous functions in G, (H).

We use the fact that, for any T € £,1(H) and A € L{H), one has TA €
L£1(H) and [Te(T'A)| < T4l < JAllcomlIT])1. Since DZ f € Co(H, L2(H)),

we denote by w D3 f the modulus of continuity of D2 f Moreover we set
supge s || D3 Flz) |1 = [|D%lo. This way we find

(48 1Fu(o) = | (P Db Fladen, )| = [Tx(Pm D Fla)
k==l

< NP e |IDEF@)L < 1DEFlle, z€H, n>1

Therefore (F),) is uniformly bounded. The equicontinuity follows from the
inequality

() — Fﬁ(Z)\—VTf(P”[D flz) - DHT(2)])]
Sw},&f (lw—2]), =zeH nzl

STEP 4. We show that Fe D(A) = D(Ay) and Af = Aof.

Fix 2 € H. For any n 2 1, we consider OF f( :) as o function of ¢. By
the first step we know in partmul(u that for fixed o € H, limy..00 OF f ( ) =
Otf(.’f'), t=0.

Moreover, by the second and third steps, we have, for any n = 1,

(4.7) ‘m()ﬂ

IO“Fn )|<ﬂ|!DQf|lo, £ 0.
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Once we have proved that
- 1
(4.8) Jim iO? flz) = lim —O Fo(z) = O Agf(z), t>0,

using the fact that OF f(m) € Cl([O oof) for any n > 1, O()Agf( ) €
C([0, o0[) and appeahng to (4.7), we deduce that O, Flz) € ¢Y(o, oof), by
a well known lemma of Real Analysis. Moreover we ﬁnd

(4.9) %Otf(m) = O, Ao flz), t20,

and, by the Mean Value Theorem,

; Qf,@f_f@‘ <[ Aofllo, >0
yeH

By (4.9) and {4.10) we conclude that F € D(A) and further that Af = Ayf.
Thus it remains to check (4.8). We have

5508 ) - 0ol

(4.10)

508 Fx(2) - 0o
< é— V| Fulz + Py) — Folz + 1)IN(0,1Q) dy
H
%S‘ZAka ’NOtQ
H k=n+1l

<z {w_pﬂ (|1P™y - y))
H

oQ
+ 3 D@+ |V OQdy, 20,021
k=n41
Letting n — oo we get |{d/dt)OP f(z) — OonJ?(:L”)| — 0, by the Dominated
Convergence Thecrem, The proof of (i) is complete. w
4.2. A Dirichlet problem in a half space of H. In this subsection the fact
that H is finite-dimensional or infinite-dimensional has no relevance for the
statements or proofs.
~ We define an open half space of H with respect to the orthonormal basis
{ex}r>1, previously fixed. Each element z of H will be identified with its
coordinates with respect to that basis. We set
Hyi={z= ($1,$’) eH: x> 0}
Let H' be the Hilbert subspace gemerated by {ex}i»z. We set @'z’ =

Yohez Mher, & = (x}) € H'. Moreover we have H, = R, x H', where
Ry = (0, oc).
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Now we construct a semigroup P, associated with the following infinite-
dimensional Dirichlet problem (see [21] for details):

(4.11) Mp(e) — §THQDY ()] = f(z), =€ Hy, A>0,
' Y(2) =0, z€dHy,
where f € C,(Hy) and 0H, denotes the boundary of H,.
For any g € Cp,(Hy), we set Eg(z) = glz) if £ = (zy,2) with 27 = 0,
Eg(z) = —g(—z1,2") if = (z1,2") with z; < 0. Define

Pif(@) = | Bf(e +viyN(0,Q)dy
H
S f(yla yl)D(mll t')‘l) ®N($,sth)(dy1: dy,)a
Ry x HY
for f € Co(H4), £ > 0 and x € H, where

Dy, th1){dy1)
(e*—(ml—ya)z/(%)u) — e (mtun)®/(28)

V2mEA L
and N(2,1Q") is a Gaussian measure on H’'. Notice that D(z1,tA1) ®
N(fB’,tQ’}(Hq.) <l, € H+, t > 0.

It is possible to verify that P is a semigroup of contractions on Cy(H+ ).
Clearly P; is a transition w-semigroup on Cp(H4) but it is not a strongly
continuous semigroup. Indeed the mazimal subspace on which P; is a strongly
continuous semigroup is Co(H..) = {f € Cu(H4) : f(z) =0for z € 8H, }.

It is possible to prove that P,f € Co(Hy) for any f € Co(Hy) and
t > 0 (see [21, §3.6]). This implies that P; is not a w-semigroup on Co(Hy)
(compare with (b) of Remark 2.5).

Let 7 be the generator of P,. Notice that 7T coincides (by Proposition
3.6) with the generator introduced in [21] by the pointwise Laplace transform
of P,. Now we consider the following subsets of H.: H] = {(z1,2") € Hy :
z: > n}, >0

)dyl, M >0, x>0,

PROPOSITION 4.2. For any f € Cp(Hy) we have:

() limg—g+ Paf = f uniformly on each HI, for anyn > 0;
(ii) limy o Pyytf = Pof uniformly on Hy, for anyt> 0.

Proof. (i) Let us fix » > 0 and prove that

(4.12) 11m sup |Psf(z) — f(z)] = 0.

-0t 3T
Thanks to the separability of H, we can choose a countable dense subset D7
of HY. Since P,f — f € Co(H) for any s > 0, formula (4.12) is equivalent
to hms,.,o+ supgepn |Paf(z) — f(z)i = 0.
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We introduce the functions F, : H — R, s > 0, by
(4.13) Fi(y) = sup |Ef(z++sy)— Ef(z)l, s20, y€H.
rEDT

Tt turns out that ||Fsllo < 2/ fllo and F; is a Borel function on H for all
s > 0. Furthermore, thanks to the uniform continuity of f, we get

(4.14) 1i151+ Fe(y) =0, yecH.

Now since

sup |Psf(z) — flz)] < S Fe(y)N(0,Q) dy,

xe D" i
letting s — 07 on the right-hand side, by the Dominated Convergence The-
orem, we obtain (4.12). Thus (i) is proved.

(ii) Fix ¢ > 0 and f € Cu(HL). Since P f € Co(HL), it follows that

lim, g+ P.Pif = P.f in Cy(H,.). Hence to verify the assertion it remains to
check that

lim P.P.f=Pf i Cy(H.).
s§—0—

To this purpose we have, for any —t/2 < s <0,

“Ptf - Ps+tf”0 = ’[Ps+t/2(Pt/2—sf - Pt/zf)”ﬂ < HPﬂ/Q—af - Pt/?.f“O»
so that

551011_ [[Pif — Pavefllo < hl_i%l_l_ |Pyjornf — Pipafilo=0. m

Let us introduce the family P = {H] },»0. Stmilarly to (3.14), we can
define the linear operator 7p : D(Tp) C Cy(Hy ) — Cp(Hy) as follows:
D(Tp) = {f € D(T) : for any Hl eP,
(4.15) Jm, ﬁfﬁ |h (Paf(z) — flz)) — T f(z)| = 0}, |

Tpflz) =T f(z), feD(Tp), z€H,.
By the previous proposition and by Theorem 3.7 we deduce that 7p = 7.

4.3. The Ornstein-Uhlenbeck semigroup. Let S; be a strongly continuous
semigroup on H, and let M be a self-adjoint and nonnegative bounded
operator on H. For all £ > 0 we define the bounded linear operators M (t)
by

i
MMz =\S.MSixdu, weH,
0
where 57 is the adjoint semigroup of S;. Suppose that for each ¢ > 0, M{t)
is a trace class operator. Under this assumption, there exist the Gaussian
measures N (Syz, M (1)), t > 0, = € H. The Ornstein-Uhlenbeck semigroup
on Cy(H), associated with S; and M, is defined as follows:

(4.16) Tif(@)= | f(Siw +y)N(0, M) dy, f€Co(H), z € H, t>0.
H
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This semigroup has been intensively studied, under various assumptions (see
for instance [4]-[8]).

Unless 8; = I, for any t > 0, Uy is not a strongly continuous semigroup
on Cp(H) (see [5, §6]). However U; turns out to be a transition 7-semigroup
on Ch(H). To see this, it is enough to verify that the map t — U;f(x) is
continnous for any f € Co(H) and = € H. Actually a stronger assertion
holds: for any compact set K in H, and f € C,(H), one has

(4.17) lim sup |Upnf(z) — Usf(z)| =0, >0
h-0 e K

This result was proved by Cerrai (5, Proposition 6.2 and Lemma 6.3] in case
St is a semigroup of negative type {this hypothesis can be removed with few
changes in Cerrai’s proof). For a different proof see [22, §3.3.1].
Denote by U the generator of the n-semigroup U;. By Proposition 3.6,
U coincides with the generator introduced in [5] by the pointwise Laplace
transform of U,.
We can introduce another linear operator Ux : D(Ux) C Co(H) —
Cyp(H), defined as follows:
D(Ux) = {f € DU} : for any Kek,

(4.18) Jim, sup |A™"(Unf(z) — f(=)) — Uf(z)| =0},
Ucf(z) =Uf(z), fe DUk}, =< H.

By (4.17) and by Theorem 3.7, we deduce that U = i.

Finally, we mention that there exist Markov transition semigroups on
Cw(H) associated with non-Gaussian transition functions, which satisfy con-
dition (4.17). Among these semigroups there are the Mehler semigroups,
studied in [12], where also (4.17) is proved. Thus also for the Mehler semi-
groups, as for the Ornstein—Uhlenbeck semigroups, we can define a generator
in three different equivalent ways: by a pointwise Laplace transform (as in
[12, §4]), by a pointwise limit of an incremental ratio of the semigroup (as
in (3.1)) and also by a uniform limit on compact sets of H of the same
incremental ratio (see (4.18)).

5. Possible extensions. We have presented the theory of m-semigroups
in the space C,(E) for convenience. However, it is possible to extend this
theory to more general function spaces. Here we briefly indicate how to
proceed.

Let B(E) be the Banach space of all bounded real functions on E, en-
dowed with the sup norm. We consider any linear subspace O(E) of B(E)
that has the following two properties.

(i) @(E) is closed in B(E) (with respect to the norm topology).
(ii) For any T' > 0 and for any map G : [0, T} x £ — R satisfying:
(a) G(-,z) is a Borel map on {0,T] for any z € E;
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(b) G(s,-) € O(E) for any s € [0,T7;
(€) sup,e,m 1G(s, -)llo < oo,
the map g : E — R given by g(z) = Sg G(s,z}ds, z € E, belongs to @(F).

Conditions (i) and (ii) are similar to those introduced by Dynkin [10,

p- 57]. Moreover the space Cy, (F) satisfles these assumptions (see Lemma 3.3).

By (i}, (@(E),| - llo) is a Banach space. On &(FE) we can define -
convergence for sequences as in Cp(E) and also w-semigroups of bounded
linear operators (through Definition 2.1 with C,{E) replaced by @(E)). Let
P; be a w-semigroup on O(F) of type w. The following two basic facts about
P; can be deduced from (i) and (ii).

(1)} For any f € @(F) and T > 0, the map z +— Sg P, f(z) dt belongs to
er).
(2) For any f € ©(F) and A > w, the map g defined by

gl@) = | e P, f(z) du,
0

x €5,

belongs to O(E).

Clearly to obtain (1) and (2) it is enough to assume in hypothesis (a) of
(i) that the map G(-, %) is continuous on [0, T] for any z € E. Our generality
is motivated by future applications to the Cauchy problem for m-semigroups.

We emphasize that @(F) can also be the space BC(E) of all continuous,
real and bounded functions on E. All results of Sections 2 and 3 can be
adapted to the space BC{E). It is easy to see that the heat semigroup O,
is a m-semigroup on BC(H). Moreover, by the standard properties of weak
convergence of Gaussian measures, U is also a m-semigroup on BC(H). The
semigroup Py, associated with the Dirichlet problem considered in §4.2, is
not a m-semigroup on BC(H,) (the same happens with the space Co(H L),
compare with (b) of Remark 2.5). P, is a w-semigroup on the Banach space
of all functions in BC(H,.) which can be extended to maps belonging to
BC(H.), endowed with the sup norm.
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