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0. Introduction.

Let X and Y be given sets and F(x) be a multi-function from X to the
collection of non-empty subsets of Y. The so-called selection problem is a
problem to determine whether there exists a suitably smooth function f(x),
called a selector of F(x), such that flx)eF(x) for each x&X. The selection
problem has been treated in several papers. In [1],[3], [4] and [5] it has been
shown that a continuous selector can be selected from suitably smooth multi-
functions. In the papers mentioned above it has been assumed that the multi-
function is a convex set valued function. In this note we shall introduce the
notion of the absolute-continuity of a multi-function and show that we can
select a continuous selector from compact (not necessarily convex) set (in R™)
valued functions, absolutely continuous on an interval in R

A relation of the form

@) eF(t, x(t))
is called a contingent equation, where F(z,x) is a multi-function, called an
orientor field. T.Wazewski [7] has combined the control theory and the theory
of contingent equations which was originated by M.Hukuhara and developed by
Marchaud-Zaremba. The theory of Marchaud-Zaremba is concerned with the
convex orientor fields. T.Wazewski [6] investigated the problem without as-
suming the convexity of the orientor. fields. By introducing a new notion of
generalized solutions, he has succeeded to extend the results of Marchaud-
Zaremba. On the other hand, A.F.Filippov has shown the existence of solutions
in case when orientor fields satisfy a Lipschitz condition. The second purpose

of this note is to show the existence of solutions for non-convex absolutely
continuous orientor fields.

1. Notations and definitions.
We introduce notations and recall some definitions. We denote by
Comp (R™) (resp. Conv (R™))

the collection of all non-empty compact (resp. compact and convex) subsets of
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m~dimensional Euclidean space R™. By
dist (x, %) and dist (x, A)=dist (A4, x) =inf {dist (x, y); y= A}

we denote the Euclidean distance of a point  from a point y=R” and a set
ACR™, respectively. For A, B€Comp (R™) we put

Dist (4, B)=inf{s>0; AcV(B,s), BCV(4,s)},
where V(A,s) denotes the closed neighborhood of a set A of radius s, i.e.,
V(4,s)={zxeR™; dist (x, A)<s}.
This Hausdorff distance can be shown to satisfy the following relation
Dist (4, B)=sup{dist (a, B), dist (5,4) ; acA,besB}.

9A denotes the boundary of A. |A| denotes Dist (4, 0), where O is the origin
in R™,

Let K(x)=Comp (R™) be a function defined on a closed set ECR”. K(x)
is said to be absolutely continuous on E iff for every positive ¢ there corresponds
a positive ¢ such that

>3 Dist (K(=), K(xiyn<e

holds for all choices of finite points {x;}, {x{} CE with

3 dist (a, ®/) <6.

2. Selection theorems.
In this chapter we treat selection problems. Let F(z) be a multi-function
defined on an interval I in R'.
Theorem 1. Let F(t)=Conv (R™) be a function defined on an interval I.
Assume that F(t) satisfies a Lipschitz condition, i.e., there exists a positive
constant L such that

Dist (F(), FG))sLii—¢'|, tt'el

Then there can be selected a Lipschitz continuous function f(t) with the Lipschitz
constant L such that

fEdF@®), tel

Proof. Since we can have a global section by joining local sections end
to end, it is sufficient to prove this Theorem in case when I is a compact interval
[t,, T1. Let D be a subdivision of I as follows,

D . to<t1<t2<"‘<tn=T.
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Let x, be any point of 08F(z). Since F(z,) is a convex set, we can select a
point x; such that

dist (%o, %,) =Dist (F(£), F(¢1)),
2 E0F(2y).

Indeed, in case when x, does not belong to the interior of F(¢;), there exists
a point x; of 8F(¢;) such that

dist (2o, x1) =dist (%, F(£,)) Dist (F(20), F(21)).

On the other hand, let x, belong to the interior of F(z;). Since x,€8F(t,) and
F(t,) is convex, there exists a supporting hyperplane P through x,. Let H be
the open half-space which is divided by P and does not contain any points of
F(t,) and let L be the line through x, which is perpendicular to P. Since x,
is an interior point of F(z,), the line L through x, intersects 8F(¢,) at two
points. A point of those which is contained in H we denote by x;. By the
construction of x; the relation

dist (x, ;) =dist (F(zy), x) =Dist (F(¢), F(¢))
holds. We can select {xz}(£=0,1,---,n) inductively as follows,
dist (%z-1, £2) =Dist (F(tz-0), F(t2)),
2, S0F(tz).
We define a polygon x(z;D) corresponding to this subdivision D as follows,

tp—t t—tp_y .
x(¢;:D)= Tpy+ T, i t€[tpy, 8]
tp—Llp-1 tp—tp—y

Here we note by the construction of x(z;D) that we have the following relation

7 __ —!
dist (x(¢; D), x(¢'; D)) = dist <o, L el B i xk>
tp—itp—y tp—tpa

_ =
Lp—lp
—ql
L=
tp—lpy
=Ll|t—1t'|

dist (g, Tp—1)

L(tp—tp-1)

and hence
dist (x(z; D), x(¢';D)ZLit—¢|, t,t'<l.

Indeed, for t,#'eI (¢<t'), there exist positive &, 1 (8<1) such that :&[tp, 1411,
t'e[#;,¢;.1] and hence from the above relation we have

dist (x(¢; D), x(#'; D))
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<dist (x(t; D), Tp41) +dist (Xpsq, Ta2d++

dist (x3_y, x) +dist (7, (¢’ ;D))
SL{Gru— )+ @rae—tpr) + -+ @r—ti)+ @ —tpD}
=L|t'—t|.

Let {D,} be a sequence of subdivisions of I

(n)

D, ty=t <t <ot =T

such that
8(D,)=max {t{1—t{; 0<i<k,—1}

tends to zero as n—>oco. We will denote by x,(¢) the function x(¢;D,) which
is constructed as above corresponding to D,. This {x,(?)} is a family of func-
tions which have the same Lipschitz constant L. Indeed, we have

dist (x,(8), x, @) ZLjt—t)|, ¢, 'l

Hence {x,(#)} is an equi-continuous family. By the construction of x,(#),
2,(¢,) =2, holds for each » and hence the equi-continuous family {x,(¢)} is uni-
formly bounded on I. Therefore, we can assume without loss of generality
that {x,(#)} converges uniformly to a function x(z) continuous on I. This x(2)
is a Lipschitz continuous function which has the Lipschitz constant L.

We shall prove that

x(HEFQ®), tel.

Let ¢ be any point of I. We can select a sequence {t}(z:)} of subdivision points
of {D,} such that

lim 47 =¢.

n—>0

Since the relations
Tu(thn YEFCERD),
lim 2, (257 = 2(2)
hold, we have by the continuity of F(z) that
x(t)EF().
We shall next prove that
x()E0F (&)
for each t€I. Suppose that for somefct

2(E)&OF(E).
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Hence x() is an interior point of F(f). Therefore, there exists a positive g,
such that

F@EoV(x@),2¢).

Since F(¢) is continuous and {x,(z)} is equi-continuous on I, we can find a
positive ¢ such that

dist (F(2), F(E)) <eq, dist (x,(2), 2,(E)) <&
for each n and each t&1 satisfying

t—f|<a.

Since an equi-continuous family {x,(¢)} converges uniformly to x(z), there exists
a sufficiently large positive integer n, and a subdivision point t;(ez'f,) of D, such
that

dist (Tn(t99), 1)) <o, |659—F<35.

Since xm(téﬁ?)eaF (t%’?) and F(tm,)) is convex, there exists a supporting hyper-
plane P through xm(t%‘?). Let H be the open half-space which is divided by
P and does not contain any points of F (tfeﬁ)) and let L be the line through

xno(t;ez‘:,)) which is perpendicular to P. Since xno(tgﬁ,)) is an interior point of
F(D) because of

dist (tme(zhn), 2(E)) <eo
and by the choice of V(x({),2¢,), there is a point x*€8F(f) which is contained
in both L and H. Hence we have

‘Dist (F(), FGE5)) Zdist (2%, 2n(to))
(no)

=dist (&%, x(@)) —dist (0 (@), Xn(Ekny )) > 2800 =6y,
which contradicts
Dist (F(), F(tkn)) <eo.

Theorem 2. Let F(t)&Comp (R™) be an absolutely continuous function
defined on an interval I. Then there can be selected a continuous function f(2)
such that

fHeFQW), tel

Proof. The proof of this theorem follows that of Theorem 1. We use
the notations similarly as in the proof of Theorem 1. We construct a sequence
of polygons {x,(#)} similarly as in the proof of Theorem 1. However, we can
not say that x; belongs to the boundary of F(z), since F(¢;) is not necessarily
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convex. We shall prove that {x,(¢)} is equi-continuous on I. Since F(2) is
absolutely continuous, for every positive & there is a positive § such that

3 Dist (F(t;), F))<e
for all choices of finite points {t;}, {t/} satisfying

2 |ei—ti] <0,

Let ¢, ¢’ be points of I. For every n there exist positive integers p, and g, such
that

£ St <tha <o <o <t Stor .

Since 8(D,)—0 as n—>co, we can assume without loss of generality that
8(D,,)<-i—, n=1,2, .
Then, if [t—¢'|<d/2, we have
K )
—Z‘pl ltix1—2i |<d, n=1,2,.
By the construction of {x,(#)} we have
a—1
dist (@u(8), Zn (D) < 2 dist (@ (170, 2,(t))
=Py

2l (n) ()
<8} Dist (PG, FG).
i=pn

Therefore, we have
dist (,(®), x, (")) <e, n=1,2,--

for t,t' I satisfying
]
=t <—.
le—2'|< 2

Since an equi-continuous family {x,(#)} is bounded at z,, we can assume
without loss of generality that {x,(¢z)} converges uniformly to a function f(¢)
continuous on I. By the absolute continuity of F(¢) we conclude that

fOEFQW), tel.

Similarly as in the proof of Theorem 1 and Theorem 2, we can give the
proof of the following theorems.

Theorem 3. Let F(t) =Conv (R™) be an absolutely continuous function
defined on an interval I. Then there can be selected a continuous function f(t)
such that
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fHEdFQ®), t=l.

Theorem 4. Let F(t)eComp (R™) be a Lipschitz continuous function with
the Lipschitz constant L defined on an interval I. Then there can be selected a
Lipschitz continuous function f(t) with the Lipschitz constant L such that

fHeF®)), tel.

3. Existence theorem of solutions for orientor fields.
In this chapter we give an existence theorem of solutions for non-convex
orientor fields. Let I be an interval [z, T7].

Theorem 5. Let F(t,x)<=Comp (R™) be an absolutely continuous function
defined on IXR™ and let there exist a positive number M such that
|F,2)|SM on IXR™, »
Then, for each Xo=R™ there exists a continuously differentiable function x(t)
such that

d—xd(;)—EF(t, x(t)) on I,

x(y) =%g.
Proof. We divide I by a subdivision
Dty <ty <ty <o <Ztp=T.
For any u,F(to, x,) we put
xy =0+ (E1—2to) 4o
Next, we take out u;EF(¢;, %y) in such a way that
dist (uo, uy) =dist (ug, F(24, %1)),
and put
Ze=%;+ (Ea— ) uy.
By the construction of u;, the relation
dist (zg, ) <Dist (F(to, %o)s F(4, 1))
holds. Successively, we can construct {«;}, {x;}, i=0,1,---,%2, in such a way
that
w, €F(t;, %),
dist (u;_1, ui) <Dist (F(t;-1, %:i-1), F(ti, %)),
Ti= 2+ =t Dui
and we define in each interval [%;2;4(], 1=0,1,---, 2—1,
x(t; D) =x;+ G —t)u;,
u(t; D) =ui+ (@ —1) Givs )7 (Wi — %)
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Here we have by the similar computation as in the proof of Theorem 1 that
dist (u(#; D), u(t'; D)) <dist (ui, wins), t,8' [t tias],
dist (x(&; D), x(@'; D)) <Mlt—¢'|, t,t'el

hold by the construction of u(¢;D) and x(¢; D). In this way we have constructed
continuous functions x(¢;D) and «(¢;D) on the interval I.
Let {D,} be a sequence of subdivisions of I

(n)

(n) (n)
D, :ty=t" <t1" < <tpn =T

such that
8(D,) =max {#{1—#{" ; 0<i<k,—1}
tends to zero as n—oo. By x,(¢) and u,(z) we will denote x(¢;D,) and
u(t;D,), respectively.
We shall next prove that {«,(#)} is equi-continuous on I. Since F(z,x) is
absolutely continuous, for every positive ¢ there is a positive ¢ such that

3 Dist (F(t;, %), F(ef, xD)) <e
for all choices of finite points {(z; %)}, {(tf, x)} satisfying

Ne—2i1<d, 23 dist (x;, x5) <M.

Let ¢,¢ be points of I. For every » there exist positive integers p, and g, such
that

10 SE<tp <<t <t <t

Since 6(D,) —0 as n—oo0, we can assume without loss of~ generality that
BDI<E, n=1,2,
Then, if |t—¢'|<d/2, then we have
:glltfi)1—t§")l<8, n=1,2, -
By the construction of {x,(¢)} we have

n—1
dist (un(®), un(E)) S 52 dist (un(TD), un (™))
i=pn

gn—1
<, Dist (F(%, ma(tfP)), FG, 2,G8)))
1=Dn

and

a1 o - K )
iz“.ﬁ dist (@, (2%1), 2, (5" = ‘z;.’ Mitin—" | <M.
=Pn t=Pn
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Therefore, we have
dist (#,(2), un(t))<e, n=1,2,

for ¢,t'<I satisfying
0
t—t' | <—.
jt— <2

Hence we have proved that {«,(#)} is equi-continuous. By the construction of
un(2), u,,(20) =uy holds for each n and hence the equi-continuous family {u,(£)}
is uniformly bounded on I. Therefore, we can assume without loss of gener-
ality that {u,(?)} converges uniformly to a function #(z) continuous on I. For
each ¢=] we can find an interval

(n) ()
[tk:1 stenr1]

such that

@
tE[th, , thy+1]

and in this interval

dx, (¢ n
xd—t():un(tl(zn)),

dist (—‘%@ un(®) ) & dist (a2, Ef2010)

hold. Hence we have that
lim —2~ "( ) _

71—

=u(?)

uniformly on I and hence {x,(#)} converges to a function x(¢) continuous on
I with

dx(t)
ax\r) =
o u(®), t<l,
x(to)':xo.
By passing »n to infinity in the relation
dx, (¢ "
~———§f) wCtEYEF D, 2,G0)), ey, ek,

we have by the continuity of F(¢,x) in (¢, x) that

dx(t)

It ——=cF(¢,x@), tel.
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