On the Absolute Continuity of Multi-Functions and Orientor Fields

By Norio Kikuchi and Yoshihito Tomita
(Kōbe University and Kōbe University of Mercantile Marine)

0. Introduction.

Let X and Y be given sets and F(x) be a multi-function from X to the collection of non-empty subsets of Y. The so-called selection problem is a problem to determine whether there exists a suitably smooth function f(x), called a selector of F(x), such that $f(x) \in F(x)$ for each $x \in X$. The selection problem has been treated in several papers. In [1], [3], [4] and [5] it has been shown that a continuous selector can be selected from suitably smooth multifunctions. In the papers mentioned above it has been assumed that the multifunction is a convex set valued function. In this note we shall introduce the notion of the absolute-continuity of a multi-function and show that we can select a continuous selector from compact (not necessarily convex) set (in R^m) valued functions, absolutely continuous on an interval in R^1 .

A relation of the form

$$\dot{x}(t) \in F(t, x(t))$$

is called a contingent equation, where F(t,x) is a multi-function, called an orientor field. T. Ważewski [7] has combined the control theory and the theory of contingent equations which was originated by M. Hukuhara and developed by Marchaud-Zaremba. The theory of Marchaud-Zaremba is concerned with the convex orientor fields. T. Ważewski [6] investigated the problem without assuming the convexity of the orientor fields. By introducing a new notion of generalized solutions, he has succeeded to extend the results of Marchaud-Zaremba. On the other hand, A. F. Filippov has shown the existence of solutions in case when orientor fields satisfy a Lipschitz condition. The second purpose of this note is to show the existence of solutions for non-convex absolutely continuous orientor fields.

1. Notations and definitions.

We introduce notations and recall some definitions. We denote by

Comp
$$(R^m)$$
 (resp. Conv (R^m))

the collection of all non-empty compact (resp. compact and convex) subsets of

m-dimensional Euclidean space R^m . By

$$\operatorname{dist}(x, y)$$
 and $\operatorname{dist}(x, A) = \operatorname{dist}(A, x) = \inf \{\operatorname{dist}(x, y); y \in A\}$

we denote the Euclidean distance of a point x from a point $y \in \mathbb{R}^m$ and a set $A \subset \mathbb{R}^m$, respectively. For $A, B \in \text{Comp}(\mathbb{R}^m)$ we put

Dist
$$(A, B) = \inf\{s > 0 ; A \subset V(B, s), B \subset V(A, s)\},\$$

where V(A, s) denotes the closed neighborhood of a set A of radius s, i.e.,

$$V(A,s) = \{x \in \mathbb{R}^m; \operatorname{dist}(x,A) \leq s\}.$$

This Hausdorff distance can be shown to satisfy the following relation

Dist
$$(A, B) = \sup \{ \text{dist } (a, B), \text{ dist } (b, A) ; a \in A, b \in B \}.$$

 ∂A denotes the boundary of A. |A| denotes Dist (A, O), where O is the origin in \mathbb{R}^m .

Let $K(x) \in \text{Comp}(R^m)$ be a function defined on a closed set $E \subset R^n$. K(x) is said to be absolutely continuous on E iff for every positive ε there corresponds a positive δ such that

$$\sum_{i} \text{Dist}(K(x_i), K(x_i')) < \varepsilon$$

holds for all choices of finite points $\{x_i\}$, $\{x_i'\} \subset E$ with

$$\sum_{i} \operatorname{dist}(x_{i}, x'_{i}) < \delta.$$

2. Selection theorems.

In this chapter we treat selection problems. Let F(t) be a multi-function defined on an interval I in \mathbb{R}^1 .

Theorem 1. Let $F(t) \in \text{Conv}(\mathbb{R}^m)$ be a function defined on an interval I. Assume that F(t) satisfies a Lipschitz condition, i.e., there exists a positive constant L such that

Dist
$$(F(t), F(t')) \leq L|t-t'|$$
, $t, t' \in I$.

Then there can be selected a Lipschitz continuous function f(t) with the Lipschitz constant L such that

$$f(t) \in \partial F(t), t \in I.$$

Proof. Since we can have a global section by joining local sections end to end, it is sufficient to prove this Theorem in case when I is a compact interval $[t_0, T]$. Let D be a subdivision of I as follows,

$$D: t_0 < t_1 < t_2 < \cdots < t_n = T.$$

Let x_0 be any point of $\partial F(t_0)$. Since $F(t_1)$ is a convex set, we can select a point x_1 such that

dist
$$(x_0, x_1) \leq \text{Dist}(F(t_0), F(t_1)),$$

 $x_1 \in \partial F(t_1).$

Indeed, in case when x_0 does not belong to the interior of $F(t_1)$, there exists a point x_1 of $\partial F(t_1)$ such that

$$\operatorname{dist}(x_0, x_1) = \operatorname{dist}(x_0, F(t_1)) \leq \operatorname{Dist}(F(t_0), F(t_1)).$$

On the other hand, let x_0 belong to the interior of $F(t_1)$. Since $x_0 \in \partial F(t_0)$ and $F(t_0)$ is convex, there exists a supporting hyperplane P through x_0 . Let H be the open half-space which is divided by P and does not contain any points of $F(t_0)$ and let L be the line through x_0 which is perpendicular to P. Since x_0 is an interior point of $F(t_1)$, the line L through x_0 intersects $\partial F(t_1)$ at two points. A point of those which is contained in H we denote by x_1 . By the construction of x_1 the relation

$$dist(x_0, x_1) = dist(F(t_0), x_1) \leq Dist(F(t_0), F(t_1))$$

holds. We can select $\{x_k\}$ $(k=0,1,\dots,n)$ inductively as follows,

dist
$$(x_{k-1}, x_k) \leq \text{Dist}(F(t_{k-1}), F(t_k)),$$

 $x_k \in \partial F(t_k).$

We define a polygon x(t;D) corresponding to this subdivision D as follows,

$$x(t;D) \!=\! \frac{t_k \!-\! t}{t_k \!-\! t_{k-1}} x_{k-1} \!+\! \frac{t \!-\! t_{k-1}}{t_k \!-\! t_{k-1}} x_k, \quad \text{if } t \!\in\! [t_{k-1}, t_k].$$

Here we note by the construction of x(t;D) that we have the following relation

$$\begin{aligned} \operatorname{dist}\left(x(t;D),x(t';D)\right) &= \operatorname{dist}\left(O,\,\, \frac{t'-t}{t_k-t_{k-1}}\,x_{k-1} + \frac{t-t'}{t_k-t_{k-1}}\,x_k\right) \\ &= \frac{|t-t'|}{t_k-t_{k-1}}\,\operatorname{dist}\left(x_k,x_{k-1}\right) \\ &\leq \frac{|t-t'|}{t_k-t_{k-1}}\,L(t_k-t_{k-1}) \\ &= L|t-t'| \end{aligned}$$

and hence

dist
$$(x(t;D), x(t';D)) \leq L|t-t'|, t,t' \in I$$
.

Indeed, for $t, t' \in I$ $(t \le t')$, there exist positive k, l $(k \le l)$ such that $t \in [t_k, t_{k+1}]$, $t' \in [t_l, t_{l+1}]$ and hence from the above relation we have

$$\operatorname{dist}\left(x(t;D),x(t';D)\right)$$

$$\leq \operatorname{dist} (x(t;D), x_{k+1}) + \operatorname{dist} (x_{k+1}, x_{k+2}) + \dots + \\ \operatorname{dist} (x_{l-1}, x_l) + \operatorname{dist} (x_l, x(t';D)) \\ \leq L\{(t_{k+1} - t) + (t_{k+2} - t_{k+1}) + \dots + (t_l - t_{l-1}) + (t' - t_l)\} \\ = L|t' - t|.$$

Let $\{D_n\}$ be a sequence of subdivisions of I

$$D_n: t_0 = t_0^{(n)} < t_1^{(n)} < \dots < t_{k_n}^{(n)} = T$$

such that

$$\delta(D_n) = \max\{t_{i+1}^{(n)} - t_i^{(n)}; 0 \le i \le k_n - 1\}$$

tends to zero as $n \to \infty$. We will denote by $x_n(t)$ the function $x(t;D_n)$ which is constructed as above corresponding to D_n . This $\{x_n(t)\}$ is a family of functions which have the same Lipschitz constant L. Indeed, we have

dist
$$(x_n(t), x_n(t')) \le L|t-t'|, t, t' \in I$$
.

Hence $\{x_n(t)\}$ is an equi-continuous family. By the construction of $x_n(t)$, $x_n(t_0) = x_0$ holds for each n and hence the equi-continuous family $\{x_n(t)\}$ is uniformly bounded on I. Therefore, we can assume without loss of generality that $\{x_n(t)\}$ converges uniformly to a function x(t) continuous on I. This x(t) is a Lipschitz continuous function which has the Lipschitz constant L.

We shall prove that

$$x(t) \in F(t), t \in I.$$

Let t be any point of I. We can select a sequence $\{t_{k_n}^{(n)}\}$ of subdivision points of $\{D_n\}$ such that

$$\lim_{n\to\infty}t_{k_n}^{(n)}=t.$$

Since the relations

$$x_n(t_{k_n}^{(n)}) \in F(t_{k_n}^{(n)}),$$

 $\lim_{n \to \infty} x_n(t_{k_n}^{(n)}) = x(t)$

hold, we have by the continuity of F(t) that

$$x(t) \in F(t)$$
.

We shall next prove that

$$x(t) \in \partial F(t)$$

for each $t \in I$. Suppose that for some $t \in I$

$$x(t) \in \partial F(t)$$
.

Hence x(t) is an interior point of F(t). Therefore, there exists a positive ε_0 such that

$$F(\bar{t})\supset V(x(\bar{t}),2\varepsilon_0).$$

Since F(t) is continuous and $\{x_n(t)\}$ is equi-continuous on I, we can find a positive δ such that

$$\operatorname{dist}(F(t), F(\bar{t})) < \varepsilon_0, \operatorname{dist}(x_n(t), x_n(\bar{t})) < \varepsilon_0$$

for each n and each $t \in I$ satisfying

$$|t-\bar{t}|<\delta$$
.

Since an equi-continuous family $\{x_n(t)\}$ converges uniformly to x(t), there exists a sufficiently large positive integer n_0 and a subdivision point $t_{kn_0}^{(n_0)}$ of D_{n_0} such that

dist
$$(x_{n_0}(t_{kn_0}^{(n_0)}), x(\bar{t})) < \varepsilon_0, |t_{kn_0}^{(n_0)} - \bar{t}| < \delta.$$

Since $x_{n_0}(t_{kn_0}^{(n_0)}) \in \partial F(t_{kn_0}^{(n_0)})$ and $F(t_{kn_0}^{(n_0)})$ is convex, there exists a supporting hyperplane P through $x_{n_0}(t_{kn_0}^{(n_0)})$. Let H be the open half-space which is divided by P and does not contain any points of $F(t_{kn_0}^{(n_0)})$ and let L be the line through $x_{n_0}(t_{kn_0}^{(n_0)})$ which is perpendicular to P. Since $x_{n_0}(t_{kn_0}^{(n_0)})$ is an interior point of F(t) because of

dist
$$(x_{n_0}(t_{kn_0}^{(n_0)}), x(\bar{t})) < \varepsilon_0$$

and by the choice of $V(x(\bar{t}), 2\varepsilon_0)$, there is a point $x^* \in \partial F(\bar{t})$ which is contained in both L and H. Hence we have

Dist
$$(F(\bar{t}), F(t_{kn_0}^{(n_0)})) \ge \text{dist } (x^*, x_{n_0}(t_{kn_0}^{(n_0)}))$$

 $\ge \text{dist } (x^*, x(\bar{t})) - \text{dist } (x(\bar{t}), x_{n_0}(t_{kn_0}^{(n_0)})) > 2\varepsilon_0 - \varepsilon_0 = \varepsilon_0,$

which contradicts

Dist
$$(F(\bar{t}), F(t_{kn_0}^{(n_0)})) < \varepsilon_0$$

Theorem 2. Let $F(t) \in \text{Comp}(\mathbb{R}^m)$ be an absolutely continuous function defined on an interval I. Then there can be selected a continuous function f(t) such that

$$f(t) \in F(t), t \in I$$

Proof. The proof of this theorem follows that of Theorem 1. We use the notations similarly as in the proof of Theorem 1. We construct a sequence of polygons $\{x_n(t)\}$ similarly as in the proof of Theorem 1. However, we can not say that x_k belongs to the boundary of $F(t_k)$, since $F(t_k)$ is not necessarily

convex. We shall prove that $\{x_n(t)\}$ is equi-continuous on I. Since F(t) is absolutely continuous, for every positive ε there is a positive δ such that

$$\sum_{i} \text{Dist}(F(t_i), F(t_i')) < \varepsilon$$

for all choices of finite points $\{t_i\}$, $\{t'_i\}$ satisfying

$$\sum_{i} |t_i - t_i'| < \delta$$
.

Let t, t' be points of I. For every n there exist positive integers p_n and q_n such that

$$t_{p_n}^{(n)} \leq t < t_{p_n+1}^{(n)} < \dots < t_{q_n-1}^{(n)} < t' \leq t_{q_n}^{(n)}$$

Since $\delta(D_n) \to 0$ as $n \to \infty$, we can assume without loss of generality that

$$\delta(D_n) < \frac{\delta}{4}, \quad n=1,2,\cdots.$$

Then, if $|t-t'| < \delta/2$, we have

$$\sum_{i=p_n}^{q_n-1} |t_{i+1}^{(n)} - t_i^{(n)}| < \delta, \quad n=1,2,\cdots.$$

By the construction of $\{x_n(t)\}$ we have

$$\operatorname{dist}(x_n(t), x_n(t')) \leq \sum_{i=p_n}^{q_n-1} \operatorname{dist}(x_n(t_{i+1}^{(n)}), x_n(t_i^{(n)}))$$
$$\leq \sum_{i=p_n}^{q_n-1} \operatorname{Dist}(F(t_{i+1}^{(n)}), F(t_i^{(n)})).$$

Therefore, we have

dist
$$(x_n(t), x_n(t')) < \varepsilon$$
, $n=1, 2, \cdots$

for $t, t' \in I$ satisfying

$$|t-t'|<\frac{\delta}{2}$$
.

Since an equi-continuous family $\{x_n(t)\}$ is bounded at t_0 , we can assume without loss of generality that $\{x_n(t)\}$ converges uniformly to a function f(t) continuous on I. By the absolute continuity of F(t) we conclude that

$$f(t) \in F(t), t \in I$$
.

Similarly as in the proof of Theorem 1 and Theorem 2, we can give the proof of the following theorems.

Theorem 3. Let $F(t) \in \text{Conv}(R^m)$ be an absolutely continuous function defined on an interval I. Then there can be selected a continuous function f(t) such that

$$f(t) \in \partial F(t), t \in I.$$

Theorem 4. Let $F(t) \in \text{Comp}(R^m)$ be a Lipschitz continuous function with the Lipschitz constant L defined on an interval I. Then there can be selected a Lipschitz continuous function f(t) with the Lipschitz constant L such that

$$f(t) \in F(t), t \in I.$$

3. Existence theorem of solutions for orientor fields.

In this chapter we give an existence theorem of solutions for non-convex orientor fields. Let I be an interval $[t_0, T]$.

Theorem 5. Let $F(t,x) \in \text{Comp}(R^m)$ be an absolutely continuous function defined on $I \times R^m$ and let there exist a positive number M such that

$$|F(t,x)| \leq M$$
 on $I \times R^m$.

Then, for each $x_0 \in \mathbb{R}^m$ there exists a continuously differentiable function x(t) such that

$$\frac{dx(t)}{dt} \in F(t, x(t)) \text{ on } I,$$

$$x(t_0) = x_0.$$

Proof. We divide I by a subdivision

$$D: t_0 < t_1 < t_2 < \cdots < t_k = T.$$

For any $u_0 \in F(t_0, x_0)$ we put

$$x_1 = x_0 + (t_1 - t_0)u_0$$

Next, we take out $u_1 \in F(t_1, x_1)$ in such a way that

dist
$$(u_0, u_1) = \text{dist } (u_0, F(t_1, x_1)),$$

and put

$$x_2 = x_1 + (t_2 - t_1)u_1$$
.

By the construction of u_1 , the relation

dist
$$(u_0, u_1) \leq \text{Dist} (F(t_0, x_0), F(t_1, x_1))$$

holds. Successively, we can construct $\{u_i\}$, $\{x_i\}$, $i=0,1,\dots,k$, in such a way that

$$u_i \in F(t_i, x_i),$$

 $\text{dist } (u_{i-1}, u_i) \leq \text{Dist } (F(t_{i-1}, x_{i-1}), F(t_i, x_i)),$
 $x_i = x_{i-1} + (t_i - t_{i-1})u_{i-1}$

and we define in each interval $[t_i, t_{i+1}]$, $i=0, 1, \dots, k-1$,

$$x(t;D) = x_i + (t - t_i)u_i,$$

$$u(t;D) = u_i + (t - t_i)(t_{i+1} - t_i)^{-1}(u_{i+1} - u_i).$$

Here we have by the similar computation as in the proof of Theorem 1 that

dist
$$(u(t;D), u(t';D)) \le \text{dist } (u_i, u_{i+1}), t, t' \in [t_i, t_{i+1}],$$

dist $(x(t;D), x(t';D)) \le M|t-t'|, t, t' \in I$

hold by the construction of u(t;D) and x(t;D). In this way we have constructed continuous functions x(t;D) and u(t;D) on the interval I.

Let $\{D_n\}$ be a sequence of subdivisions of I

$$D_n: t_0 = t_0^{(n)} < t_1^{(n)} < \dots < t_{k_n}^{(n)} = T$$

such that

$$\delta(D_n) = \max\{t_{i+1}^{(n)} - t_i^{(n)}; 0 \le i \le k_n - 1\}$$

tends to zero as $n\to\infty$. By $x_n(t)$ and $u_n(t)$ we will denote $x(t;D_n)$ and $u(t;D_n)$, respectively.

We shall next prove that $\{u_n(t)\}$ is equi-continuous on I. Since F(t,x) is absolutely continuous, for every positive ε there is a positive δ such that

$$\sum_{i} \text{Dist}(F(t_i, x_i), F(t_i', x_i')) < \varepsilon$$

for all choices of finite points $\{(t_i, x_i)\}, \{(t'_i, x'_i)\}$ satisfying

$$\sum_{i} |t_i - t_i'| < \delta, \quad \sum_{i} \operatorname{dist} (x_i, x_i') < M\delta.$$

Let t, t' be points of I. For every n there exist positive integers p_n and q_n such that

$$t_{p_n}^{(n)} \leq t < t_{p_n+1}^{(n)} < \dots < t_{q_n-1}^{(n)} < t' \leq t_{q_n}^{(n)}$$
.

Since $\delta(D_n) \to 0$ as $n \to \infty$, we can assume without loss of generality that

$$\delta(D_n) < \frac{\delta}{4}, \quad n=1,2,\cdots.$$

Then, if $|t-t'| < \delta/2$, then we have

$$\sum_{i=p_n}^{q_n-1} |t_{i+1}^{(n)} - t_i^{(n)}| < \delta, \quad n=1, 2, \cdots.$$

By the construction of $\{u_n(t)\}$ we have

$$\begin{aligned} \operatorname{dist} \left(u_n(t), u_n(t') \right) &\leq \sum_{i=p_n}^{q_n-1} \operatorname{dist} \left(u_n(t_{i+1}^{(n)}), u_n(t_i^{(n)}) \right) \\ &\leq \sum_{i=p_n}^{q_n-1} \operatorname{Dist} \left(F(t_{i+1}^{(n)}, x_n(t_{i+1}^{(n)})), F(t_i^{(n)}, x_n(t_i^{(n)})) \right) \end{aligned}$$

and

$$\sum_{i=b_n}^{q_n-1} \operatorname{dist}\left(x_n(t_{i+1}^{(n)}), x_n(t_i^{(n)})\right) \leq \sum_{i=b_n}^{q_n-1} M|t_{i+1}^{(n)} - t_i^{(n)}| < M\delta.$$

Therefore, we have

dist
$$(u_n(t), u_n(t')) < \varepsilon$$
, $n=1, 2, \cdots$

for $t, t' \in I$ satisfying

$$|t-t'|<\frac{\delta}{2}$$

Hence we have proved that $\{u_n(t)\}$ is equi-continuous. By the construction of $u_n(t), u_n(t_0) = u_0$ holds for each n and hence the equi-continuous family $\{u_n(t)\}$ is uniformly bounded on I. Therefore, we can assume without loss of generality that $\{u_n(t)\}$ converges uniformly to a function u(t) continuous on I. For each $t \in I$ we can find an interval

$$[t_{k_n}^{(n)}, t_{k_n+1}^{(n)}]$$

such that

$$t \in [t_{k_n}^{(n)}, t_{k_n+1}^{(n)}]$$

and in this interval

$$\begin{split} \frac{dx_n(t)}{dt} &= u_n(t_{k_n}^{(n)}), \\ \mathrm{dist} \bigg(\frac{dx_n(t)}{dt}, \ u_n(t) \bigg) &\leq \mathrm{dist} \left(u_n(t_{k_n}^{(n)}), u_n(t_{k_n+1}^{(n)}) \right) \end{split}$$

hold. Hence we have that

$$\lim_{n\to\infty}\frac{dx_n(t)}{dt}=u(t)$$

uniformly on I and hence $\{x_n(t)\}$ converges to a function x(t) continuous on I with

$$\frac{dx(t)}{dt} = u(t), t \in I,$$
$$x(t_0) = x_0.$$

By passing n to infinity in the relation

$$\frac{dx_n(t)}{dt} = u_n(t_{k_n}^{(n)}) \in F(t_{k_n}^{(n)}, x_n(t_{k_n}^{(n)})), \ t \in [t_{k_n}^{(n)}, t_{k_n+1}^{(n)}],$$

we have by the continuity of F(t, x) in (t, x) that

$$\frac{dx(t)}{dt} \in F(t, x(t)), \ t \in I.$$

Acknowledgement. The authors express their sincere thanks to Professor Ch. Castaing for many helpful comments.

References

- [1] A.F. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control, 5 (1967), 609-621.
- [2] N. Kikuchi, On Control Problems for Functional-Differential Equations, Funk. Ekvac. (Serio Internacia), 14 (1971), 1-23.
- [3] E. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361-382.
- [4] E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J., 26 (1959), 647-651.
- [5] E. Michael, A selection theorem, Proc. Amer. Math. Soc. 17 (1966), 1404-1406.
- [6] T. Wazewski, Sur une généralisation de la notion des solutions d'une équation au contingent, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys., 10 (1962), 11-15.
- [7] T. Ważewski, On an optimal control problem, Differential Equations and Their Applications: Proceeding of the Conference held in Prague, September 1962 (1963), 229-243.
- [8] Ch. Castaing, et M. Valadier, Equations différentielles multi-voques dans les espaces localement convexes, Revue Rech. Op., 16 (1969), 3-16.
- [9] H. Hermes, On continuous and measurable selections and the existence of solutions of generalized differential equations, Proc. Amer. Math. Soc., 29 (1971), 535-542.

(Ricevita la 22-an de aprilo, 1971)