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Abstract.

Consider an equation A(z)—S(u)="h, where A is a linear selfadjoint Fred-
holm operator in a real Hilbert space H with a nonzero null-space N(A) and S
is a nonlinear completely continuous mapping. The operator S is of linear
growth at infinity and satisfies a certain coercivity condition with respect to N(A4).
It is proved that the equation has a solution for an arbitrary A& H. The abstract
theorem is applied to show the existence of weak solutions of boundary wvalue
problems for nonlinear differential equations.

1. Introduction.

This paper deals with solvability of nonlinear equations of the type A(uw)—
S(u)=*h, where A is a linear selfadjoint operator in a real Hilbert space H with
a nonzero null-space N(A), hH, S is a nonlinear completely continuous
operator. Under some additional assumptions on the operator S it is proved (see
Theorem 1) that the equation considered is solvable for an arbitrary A& H. The
same assertion under the assumption N(A)= {0} and under suitable conditions
on the operator S is proved e.g. in [1] and in other papers which deal with the
so-called “Fredholm alternative for nonlinear operators”. A result concerning
solvability of the homogeneous Dirichlet problem for nonlinear elliptic partial dif-
ferential equations whose linear part has a trivial null-space is established in [3]
and generalized in [4]. The case of nontrivial null-space N(A) is considered in
[2] where the following growth condition on the nonlinear operator S is used:
There exist #;=0, wu;>0, d<(0,1) such that

NSG)| = pay+ el ]
for each u= H.

In the present paper an analogous growth condition with =1 is introduced,
the constant u; being assumed sufficiently small. As an example of applicability
of Theorem 1 we shall give an assertion concerning weak solvability of boundary
value problems for nonlinear differential equations (see Theorem 2):
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2. Main result.

The main result of this paper is the following.

Theorem 1. Let H be a real Hilbert space with the inner product (-,-).
Let A be a linear bounded selfadjoint operator from H into H with a closed
range R(A) and finite-dimensional null-space N(A), dim N(A)=1.

Let S be a completely continuous operator from H into H (i.e., S is con-
tinuous and maps bounded subsets of H into compact sets). Suppose that there
are two constants u; =0, u,>0 such that

SD INEIEZE A

for all u=H.
Moreover, suppose that there exists 6>0 satisfying the following condition :
for any K>0 we have tx>0 such that

82 , SGtw+v)), w)zK
for all 121, |lwll=1, weNCA), veR(A), || <d.
* Then the equation
2.D A(w)—Sw)="h
is solvable for each A=H provided the constant u, satisfies the inequality
2.2 He <O M7 A+,

where M: R(A) — R(A) is the right inverse of the operator A V.

Proof. A. Let hcH be arbitrary but fixed. To prove that the equation
(2.1) is solvable with the right hand side 4 it is sufficient to show that the
equation

(2.3) CA@)—-U)=0

is solvable, where U(x)=S(u)+A.
The operator U is completely continuous and satisfies

2.4 NU @< (uy 21D + peslldl] = @+ alfee]].
Put :
K=1— min (h,w).
weN(A)
lew]] =1
Then
@5) | (UG, w)=SEw+v)), w)+ min (huw)=1
; weN(A)

|lwl]=1

1) For the definition and properties of the right inverse of the operator A see part B of
the proof of Theorem 1.
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for all 1=tx, weN(A), |w||=1, veR(A4), ||v||=4.

B. Denote by P the orthogonal projection from H onto N(A) and let Q=
I— P (I is the identity operator), i.e., Q is the orthogonal projection from H
onto R(A).

Under our assumptions there exists a linear continuous map (the so-called
right inverse) M: R(A) — R(A) satisfying

MA(x)=Qx) (x€H),
AM(y)=y (yER(A)).
C. Define the family {V.}.s, of mappings
V.: N(A)XR(A) - N(A)XR(A)
by
V. : [w,v] > [w—ePU(w+MQU (w+v)), MQUw+v)].

It is easy to see that if for some €>0 the operator V. has a fixed point

[wO’ Z’O]! i' e.,

Vs (WOr 7)0) = [w0’ UO:I
then the equation (2.3) has a solution wy+2,. For any £>0 the mapping V., is
completely continuous from N(A)XR(A) into N(A)XR(A).

D. To prove that for some &£>0 the operator V., has a fixed point in
N(A)XR(A) it is sufficient to show (by Schauder Fixed Point Theorem and by
part C of this proof) the existence of a nonempty convex closed and bounded
set JHCNC(AYXR(A) and >0 such that

V.(HOCH.
E. Put
ao=|| M| 21— o] | M),
Then for each b= R, satisfying

(2.6) b= pol | MJ(L— o | MDY,
each 0>0, weN(A4), |w||<0 and any v&R(A4), ||v||£a,+5b0, we have
2.7 I MQU (w+v))| < ap +b0. '

Indeed, if a>Q, b= usl|M||(1— us)| M)~ then for wEN(A), ||[wli<0 and veR(A),

wl|La+bo, it is

IMQU (w+ o <||Ml&; +| M| pe(o+a+bo).

Set ‘
2(5, 0) =M\, + (ual [ M| + 12| M||6—B) 0.
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The function 2(b,0) is bounded from above for 0=0, b= u,||M|[(1— u|| M|
Put

r(a)=(1—ul|M|Da.
Then condition (2.2) implies u;<||M]|™* and hence
Zcb, ‘0) _g_r(aO)

for all & and ¢ considered. Thus the inequality (2.7) holds.
F. For weN(A), |lw||=0 we have

(2.8) |lw—ePU(w-+MQU (w+v))|?
=0*~2e(Uw+MQU (w+v)), w) + | PU(w+ MQU (w+v))|?

and

2.9 (Uw+MQU(w+v)), w)
=0(U 007 w407 MQU (w+v))), 0™'w).

Fix be{ul|M||1—ulIM|D7Y, 6). Then for each 0=(6—56)"'a,, v=R(A),|v|
Zay+bo and weNCA), |wlj=0, we have ||07!MQU(w+v)||<6 by virtue of
@.7D.

Thus by the relation (2.5) there exists 0,>2(§—6)"'a, such that for each
0=00/2,

(2.10) U0 w+ 0 MQU (w+v))), o~ 'w) =1

holds provided |jw||=0 and {jv||<a,+b0.
From (2.8)~(2.10) we have:

lfw—ePUw+ MQU (w+v))|P <02 —2ep+ e[ &, + 1:(0+a+bp) ]
for each e>0, 020,/2, |wll=0, |wl|<ay+bo. Thus for p={py/2,0,> and
e (0, 0oL, + 12(00+ag+60,)172

we obtain
(2.11) lw—ePU(w+ MQU (w-+2))|| <0,

whenever |[w||=¢ and [[v||<ay+b0,.
For ||w||<00/2, ||vl|£ay+b0, and arbitrary

-1
EE<O, %‘po<ﬁ1+ﬂ2[%+ﬂo+bpo]> >

(2.12) ||w—ePU(w+MQU(w+v))H§%+%’*<Po.

we have

2) For example, {e,B) denotes the interval a<z<8.
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G. Set
g=min {Po(ﬁ1+ﬂz[po+ao+bpo])‘2, —}4— 00 (a1 3 [—{;i+ao+bﬂo]>_l }
and
H={[w,vJeN(A) XR(A) : [[w]|=00, [lv]l=ao+b0,}.
The set K is convex closed and nonempty and relations (2.7), (2.11) and (2.12)

imply Ve, (KD K. Hence the mapping Ve, has a fixed point and thus equation
(2.1) is solvable as follows from part D.

3. Application to boundary value problems.

Let £ be a bounded domain in N-dimensional Euclidean space Ry(N=1)
with boundary 82 which is lipschitzian in case of N>1. If «; are non-negative
integers (7=1,---, N) we denote a@=(&y, -, an), and

Olal
9 oasy’

a

N
where |a|= >]a@;. For k>0 (integer), let Wzk(.Q) be the Sobolev space of real
t=1

functions u=Ly(£2) for which (in the sense of distributions) DeuecL,(2) if
|| <k, with the inner product

(u, 0)k=lch§k/;2D“u(x)D“v(x)dx

and with the norm |u|,=(«, u)%/z.

Deﬁo{ing by () the set of all infinitely differentiable functions on £ with
compact supports in £, we define Wzk(..Q) to be the closure of 9(L) in Wzk(.Q).
Let V be a closed subspace of W#(2) such that

Wi (@ Ve WHD).

Let

Gy a;j(®)EL(D), aij=aj; (lil, |/I=k).

Suppose that there exists ¢>0 such that

(3.2) I MRCIOL IR
for all &R (Ji]=%) and almost all x=Q.
Let

3.3 Aij€Lo(09), Ajj=Aj (il |j1<h).

Since
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A, W)= 3 f ai;()Div(@)Diu(x)do+ 3 f A;;DivDiu dS
2 lil, /i<t / 082

lil, l7i=k

is a symmetric bounded and bilinear form on Wzk(.Q)X Wzk(.Q), we can define
the mapping A : V— V by the relation

3.4 ‘ (A, wr=A(, )

for all u,ve V.

Under the assumptions (3.1) and (83.3) the operator A is selfadjoint. More-
over, the operator A;: V— V defined by '

(A1(v),u)k=l.[_‘2| . gaij(x)Di”(x)Dju(x)dx

for all #,»€V is an isomorphism from V onto V (by condition (3.2)). The
mapping A;=A—A, is completely continuous by virtue of the complete con-
tinuity of the imbeddings from WZ(2) into Wzk"l(.Q) and from Wi(@) into
Ly(02) (see e.g. [5, Chapter II]). Thus the range R(A) is a closed subspace
of V and the null-space N(A) is finite-dimensional.

Let I be a positive integer and suppose

(3.5) 2(k—14+1)>N.

Inequality (8.5) implies that the Sobolev space er(.Q) is continuously imbedded
into the Schauder space C"'(£) and, moreover, the imbedding is completely
continuous (see e.g. [5]). For our convenience, denote by c¢* the norm of the
identity mapping from WZ(2) into CI-1(2).
Let 9} be a nonempty set of multiindices f=(8y, --+, Bnx) such that |B]|<I—1.
Lemma. Assume (3.1)-(3.5) and let dim N(A)=1. Moreover, suppose
that

(3.6) if weN(A) and the derivative D*w for some ac G| vanishes on the
set of positive measure in &, then w=0.

For weN(A), |lwlli=1, ac 9 and >0 put
0 (w)={xeQ : |D*w(x)|=¢},
Ve(w)={x=Q: 0<|D*w(x)]<e}.
Then

min inf {&>0: inf (meas @ (w)—meas¥¢(w)) =<0} =e*>0,
aEM weEN(A)

llwlle=1

3) In the surface integral the derivatives D'y, DIy are considered in the sense of traces.
Since we suppose that £ is a domain with lipschitzian boundary 82 and, moreover,

Dy, Diucs Wi(2) for li|,|jl<k, the traces are well-defined (see e.g. [5, p.15]).
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where meas denotes the N-dimensional Lebesgue measure.
Proof. Suppose that e¥=0. Then there exist ¢y= %, a monotone sequence
of positive numbers ¢, with lime,=0, and a sequence w,=N(A), |lw,l|lr=1 such

n—co

that w, converges to w, in the space Wf(;Q) (since the subspace N(A) is finite-
dimensional), Dew,(x) converges uniformly to D%w,(x) on £ for |a|<I—1

(since the imbedding from Wzk(.Q) into CI"1(£) is completely continuous) so that
meas @?,f(wﬁé%%—meas To(w,), n=1,2, .
The last inequality together with the assumption (3.6) implies

(3.7 %meas Qé%—l—meas {xeQ : |Dow, ()| <e,}

for n=1,2,---.
Let 7>0 be arbitrary but fixed. Then there exists a positive integer z, such
that for each n=n, and x=£ we have

| Deow,, (x) — Doowo ()| <7
and so
(3.8) {fxef : |Dow,(x)|<e,} C{xef : | Dew,(x)|<n+e,}

for n=n,.

From (3.7) and (8.8) we obtain
—;—meas .Qg—Z%—l—meas {x= 2 : | Daowy(x)|<n+e,}
for n=ny and thus
(3.9 %measﬁ§meas {xe 2 : |Deowy(i)| <7} .
Since the inequality (3.9) holds for arbitrary #>0, we have
%meas Q<meas (£ : Dawy()=0}.

Consequently, w,=0 by the assumption (3.6). This is a contradiction with
[lewollz=1.

For every a<= 9 let g, be a continuous monotone odd function on Rj.
Suppose that there exist constants c;,c;>0 such that

(3.10) 195 =ci+eol €
for all £ R, and suppose that
(3.11) lim g,(&)=co.
E—oo
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Define the operator S: V—V by

S, = 3, /g 0(Du(2)) D0 (x)dx

for all u,ve V.

Using the results about the continuity of the Nemyckij operator from L,(£2)
into L,(2) (see e.g. [6]), we obtain by virtue of the complete continuity of
the imbedding from W¥(2) into WEN(2) that the mapping S is completely
continuous.

Further,

IIS(u)IIk=] sup

lv]lp=1

3} [ ouDeute)Desrd

aE.‘/M
=c* X3 flga(D“u(x))[dxgc*(card M)ei(meas £)
acEHS 2
+c*(meas 2)¥2(card FY)V2c,||u||x

(card 9 is the number of points in the set () and

HS(u)IIk— Sup

llolle=1
1/2
= 3 ([ oDt Pds) " Zei(card SH>(2 meas @)1
as
(2 card )V |ull
Thus there exists u;>0 such that for each #=V we have

ISGOlle= 21+ wollelle,

/ ga(D“u(x))D“v(x)dx!

aeﬂl

where
te=min {c*c;(meas & card )%, ¢5(2 card F)V?}.
Theorem 2. Let the notation introduced in this Section be observed. Sup-
pose (3.1)-(3.6), (3.10), (3.11). Let
(3.12)  cy<e*[||M|j(card FDV2(e*+2¢*) min {2, c*(meas )2} ] 1

Then for each f&Ly(&) there exists a weak solution uycV of the equation

Alw)—Sw)=f, i.e.,
Aluo, ) — (SCup), v 5= [9 Fayo(a)dz

Jor all ve V.

Proef. Let e=(0,e*) and §=(0,¢/2¢*) be fixed. To obtain Theorem 2 we
shall apply Theorem 1. It is sufficient to verify condition (S2) with 6. Sup-
pose that this condition is not fulfilled. Then there exist K>0 and sequences,
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tnER;, limz,=00, v,ER(A), ||valle=d, w,ENCA), llwallx=1,

such that
(3.13) (Sn(wa+0,)), wa) =K.

By virtue of condition (3.5) we have |D%,(x)|<c*d for all x=@2, every =
and every e 9. Thus (using the assertion of Lemma) we have

(Sctn(wn+vn>)ywn)k
= 31 [ gunDo0, )+ Deon())) Doy (2D
aEHNJ £

=3 < I 0, 8aCta (D0, @)+ D0, ) )) D, (o)
+/ gactncbawnm+Davn<x>>>Dawn<x>dx>
ve(wy)

z a§_‘m € {ga(tTt(E—C*g)) meas Qg(wn) '—ga(tn(:*a) meas W?(wn)}

%
= a‘éﬂ eg o (£,c%0) [%l meas @7 (w) —meas T?(w):‘
=e > g.(,c*6) inf [meas 0F (w)—meas ¥¢(w)].
acH zﬁﬁI]‘V;Al)

The last inequality is a contradiction with assumption (3.13).
(Note that the integral

[ GaCnD 10+ D0, (@))) Do, ()

is estimated by means of the following inequalities: if x€¥¢(w,), D%w,(x)>0
then gq(2,(D*w, (@) + D0, (%)) D*w, (%) Zego(—£nc*8) = —eg,(£,c*8), and if zc
¥eé(wn), D*w,(x)<0 then gq(#,(D%w,(2)+D%,(x)))D%w,(2) = —eg,(£,c*5).)

4. Remarks.

Remark 1. From part G of the proof of Theorem 1 (Section 2) we obtain
for a solution #, of equation (2.1) the following estimate :

llao]?< (a0 +20 Tk )2+ (2 Tk)?,

where

0<b6<,
ay =M e+ |2ID (1= ol | M1,
K=1— min (h,w),

i

Tg=max {(6—b)"lay, tx}.
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Remark 2. If condition (3.10) is replaced by
[9.(O|ZcQ+1€1%)

(6=(0,1)), then the assertion of Theorem 2 is true with no restriction on ¢>0.
This case is solved in [2].

Remark 3. We consider the boundary value problem

A" +utg(u)=f

4.1
u(0) =u(m) =0,
where ¢ is a continuous odd and monotone function on Ry,
(4.2) lim g(£)=oo,
&—oo
(4.3) lg(&)=c1teslél.

For the sake of simplicity we consider A=1. Then ||M||=4/3, e*=n/4, c*=n'/2
From (8.12) we obtain that the sufficient condition for the weak solvability of
(4.1) for any right hand side f€Ly(0,x) is

(<D ALY Z @ =,

Cleary c,*<3/4=distance to the next eigenvalue. An open problem is whether

equation (4.1) is weakly solvable for each feLy(0,7) provided c,&<c,*, 3/4).
Remark 4. Theorem 1 can be applied to the boundary value problem for

partial differential equations, where the nonlinear perturbation is of the type

—1)7 Di(gi(x, u, ).
m%@( D CHEAATD))

However, the conditions on the functions ¢; are very complicated and it is better
to verify assumption (S2) in every particular case. An example may be obtained
by modifying slightly the example from paper [2].

The author is very much indebted to the referee for his suggestions and

comments.
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