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Volterra Integral Equations in a Banach Space

By Richard K. MiLLer*
(Iowa State University, U.S. A.)

Abstract

This paper studies a general class of Volterra integro-differential equations of con-
volution type in a Banach space X. It is shown that formally the solution of the inte-
gral equation for a class of initial conditions is equivalent to an abstract differential equa-
tion on a functional space over X. This fact is exploited directly or by adapting the
differential equation analysis to obtain information about the structure of solutions of the
integral equation. This information plus existence-uniqueness theorems for the case of
“smooth data” can be used to prove existence of generalized solutions for all data and
continuity of solutions with respect to the data.
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1. Introduction
This paper studies an abstract Volterra integro-differential equation of the
form

(VE) x’(t)=7’Ax(t)+ﬁtB(t-s)x(s)ds+f(t), 2(0) =z,

in a Banach space X. Here >0 and '=d/dt. The operator A: D(A)—X is
linear with domain D(A) dense in X while 7 is a nonnegative real number.
Any function of the form B(t)=56()A with scalar function b& L1(0, o) will
serve as an example of the class of operators B(¢) considered here although a
much more general class of operators will be studied.

Present existence, uniqueness theorems for (VE) typically have the follow-
ing type of assumptions : A is the infinjtesimal generator of a C,-semigroup, =z,
is “smooth” in some sense such as z,< D(A), and both B(¢) and f(z) satisfy
some smoothness properties such as having continuous strong derivatives. In
[1] Friedman and Shimbrot used assumptions of this type together with contrac-
tion mapping argument in order to obtain existence and uniqueness theorems.
It can easily be seen, by reading the proofs, that this type of analysis cannot be
used to prove continuity of solutions with respect to the coefficient pair (z,, f).
The purpose here is to prove some general structure theorems concerning (VE).
Our results together with known existence-uniqueness theorems can be used to
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prove continuity of solutions w.r.t the pair (x, f). They can also be used to
obtain existence, uniqueness and continuity results for a more general class of
equations.

We showed in [2] that on a finite dimensional space X, solutions of (VE)
can be used in order to construct a C,~semigroup on an appropriate function
space. If C is the infinitesimal generator of this semigroup, then all solutions
of (VE) are generalized solutions of the abstract differential equation

(DE) y' =Cy.
The generalized solutions of this abstract differential equation will generate the
same C,-semigroup. The construction of (DE) from (VE) can also formally

be carried through in case X is an infinite dimensional space. Here we shall
reverse the point of view of [2] in the sense that we shall use (DE) in order
to study (VE). Under very mild assumptions on A, B, and f we show that
solutions of (VE) are unique whenever they exist. Moreover solutions will exist
on a dense set of “sufficiently smooth” pairs (x,, f). Stronger assumptions of
the type used in [1] will imply existence, uniqueness and continuity of solutions
whenever x, is in D(A) and f is smooth, as well as existence, uniqueness and
continuity of generalized solutions for all other values of x,& X and f < C([0,
0);X).

Throughout this paper R* will denote the interval [0,c0), R! the real line
(—o0,0) and X a given real or complex Banach space with norm || ||. For any
2 in D(A), we shall always denote ||x||s=|lx]|+]|Axz]. As usual LP(I) denotes
the space of all measurable functions f such that

fI|f(t)|pdl<oo.

C(I;G) will denote the set of all continuous functions f defined on I with
values in G, and BC(R*) = {f€C(R" ; X) : || f(#)|] is bounded on R*}. B(I,X)
will denote the set of all f:I—X such that f is Bochner integrable on I. The
book of Hille and Phillips [ 3] contains all of the background material on
Bochner integrals which will be needed here. This same book plus the book of
Krein [4, especially Chapter I] contains all of the background material on semi-
groups and abstract differential equations which will be necessary to follow our
exposition. The text [5] also contains a readable account of part of the neces-
sary theory. For other recent results on various problems related to Volterra
integral equations on a Banach space see Dafermos [6], Hannsgen [7, ‘8, 9] and

MacCamy and Wong [10].

2. A Cauchy Problem
It will be assumed throughout this paper that A : D(A) —»X is linear with
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domain D(A) dense in X while for each 1>0, B(¢) is defined on the domain of
A (or on a larger set) with range in X. For each x in D(A), B (t)x is assumed
to be strongly measurable on R*. Moreover B (¢) is subordinate to A in the
sense that there exists a real valued function B(z) €L!'(R*) such that for all z
in R* and all  in D(A4)

Y] IB@z[|<B@ (lxll+|Ax|} =8 (@) ]l
These background assumptions will not be explicitly mentioned in the sequel.
From these assumptions it follows that B (f)x € B1(R*, X) for any x in D(A4)
v (see [3, p.80, Theorem 3.7.4]) and that the Laplace tranform

B*(/l)x:fmexp(—/lt)B(t)xdt

is defined and continuous on the half plane Rel>0.

Since the constant 7 is nonnegative, the only interesting cases are ¥=0 and
r=1. When 7=0, the operator A is used only in order to make precise the
domain of definition of B(#) and the subordinate assumption (2.1). We shall
assume that ¥=1. If r=0, then the results in sections 2 through 6 are easily
seen to remain true. However later results will require 72>0.

Definition. A solution of (VE) on an interval I=[0, 7] is a function x :
I—-=D(A) such that x(¢) is strongly differentiable, x(#),2’(z) and Ax(z) are con-
tinuous on I, #(0) =x, and equation (VE) is satisfied at all points ¢ in I.

Obvious modifications of this definition can be used when the interval I is
of the form [0, T) with 0<T' < +oo.

The first order of business is to show that (VE) makes sense for a class of
functions which include solutions.

Lemma 2.1. If x:[0,T]—D(A) is any function such that x(t) and
Ax(2) are continuous on [0, T], then as a function of s, B(t—s)x(s) €B'([0,z],
X) for all t in (0, T1.

Proof. Let I(s, E) denote the characteristic function of a set E. Given
an integer M>1 pick an integer N>1 such that if

u(s) = 2w (it/N) 1G5, E)
and E;=[(j—L1)¢/N, jt/{N], then [|x(s) —u(s)|]a<1/M on 0<s<i. From Corollary

1 in [3, p.73] it follows that there is a sequence of countable valued functions
{6, (s, j, N)} such that

162 (s, js N) —=B(t—s5)x (jt/N)I(s, Epl|<l/n
on [0, £] except on a null set F,(j, N). Then except on the null set F(n, N)

N
:JU F,(j, N) one has
=1

1B (=5 ()~ 2y (s, M)
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<[B(z—s) {a(s) —u(s)} ll+j§NII|B(t—8)x(jt/N) —ba(s, j, N)|

<B(¢—s)[M+ Nin.
By choosing 7 so large that N/n<1/M and then letting M—>co, it can be seen
that B(¢—s)x(s) is almost everywhere the pointwise limit of a sequence of coun-
table valued functions. This implies strong measurability. This and the esti-
mate
IBt—s)x()|<BE—s)llx()a<BE—5)K

with K=max {J|#(s)|l4 : 0<s< T} insure that B (z—s)x(s) €B([0, ], X), see [3,
p-79, Def. 3.7.3]. QE.D.

The next order of business is to find a suitable class of forcing functions f
to be used in (VE). To motivate the choice of the minimum possible class of
functions consider the initial value problem

2.2 | x’(t)=Ax(t)+fotB(t—s)x(s)ds (t>7)

with x(2) =g (¢) given on 0<t<z. If both g(¢) and Ag(z) are defined and
continuous on [0,7] and if x(¢) solves (2.2) for t>7, then the function z(¢) =
x(t+7) will satisfy the relation

2.3) z'(z)=Ax(t+r)+L”B<t—s>x(s+r)ds+ﬁ’B(t+7—s)g(s)ds

= Az(d) +L”B(t—s)z(s)ds+f_°B(t~s>g(s+7)ds

for £20. Thus z(z) solves (VE) for t>0 with initial condition x,=g(z) and
forcing function

£ =foB(t—s)g(s+z')ds.
(In the special case 7=0, g(z) reduces to a constant g(z) =x, and f(z) =0.)
Problem (2.2) has the obvious advantage that whenever a solution is known
on an interval v<f<7,, then g(#) and the solution x(z) can be pieced together
to form a new initial condition of the same type on the larger interval [0,7,]:
g(s) on 0<s<7
&)= {x(s) on 7<s<T,
The new initial condition x(z) =g,(¢) on 0<t<r7, is the right initial condition to
use if it is desired to continue the solution of (2.2) past 7,. These considera-
tions motivate the following construction.
Define Cy(—c0,0]={f: (—o0,0]—>D(A) : f has compact support and both f
and Af are continuous) with norm ||f||=sup{||f ()], : —oc0<t<0}. Given f in
Cy(—o0,0] let ¢ (f) be the function on R* to X defined by

o) O = Ba=5)£()ds
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Define Y,= {(x, F) : F=¢(f) and x=f(0) for some function f in Cy(—o0,0]}.
Lemma 2.2. Given f in Cy(—co,0], ¢(f) is well defined, bounded and
uni formly continuous on R*.
Proof. Let [—7,0] contain the support of . An easy modification of
the proof of Lemma 2.1 can be used to see that B(t—s)f(s) is in BY([—T,0],
X) for each £>0. The estimate

lo(F) @)1= f ' B—9)f()ds|< f " BE=9) 17O llads

<171 f °T3<t—s>dssufu f "B(s)ds

shows that ¢(f) is uniformly bounded on R* and tends to zero as t—oco. Put
w(h) =sup {|f (¢+h) —f(®)||4:0=2¢+h, t>—T)} and estimate as follows with A>0:

o) e+m o @ll=| [ Ba+h=s 7@ ds— [ Be=9 rras

gH f B9 (R —F()ds

+Hf-_TT_,LB (t—s) f (s+h)ds

+||f_°hB<t—s)f<s)ds

<[*se—oumast [ pa—9llflluds
+[* =917 1lads

éw(h)j?ﬁ(s)ds—}—ZHfHA sup{‘f:j:lﬁ(u)du : 520}.

The same estimate is true when A<<0. Thus
o (F) (t+h) —o (F) (£)||—0 as |[A]—0 uniformly for t>0. Q.E.D.

Given y=(x, F) in Y, put [ly||=|lz[|+]|F]| where ||F|l=sup{||F()|| : £>0}.
Lemma 2.2 and simple standard arguments will show that Y, is a normed linear
space. Let Y be the completion of Y.

Lemma 2.3. If (x,F) isin Y, then F is bounded and uniformly contin-
uous on R*. Y contains all pairs of the form (x,¢@(f)) where x is any point
in X and f is any function on (—o0,0] to X such that f and Af are uniformly
bounded on (—oo,0] and piecewise continuous on each compact interval of the
form [—T, 0] for T>O0.

Proof. The first statement follows easily from Lemma 2.2 and uniform
convergence. If x is any point in X, then pick ®#,&D(A) with x,—x and put
frn(®)=@t+Dx, on —1/n<t<0 and f£,(t) =0 if t<—1/n. Then f,(0)=x, for
all n, f, is in Cy(—o0,0] and as n—+oo one has
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l‘f—:B (t=9) fu(s) ds gf_;ﬁ’(t—S) [f2c]| ads — 0.

Thus (£,(0), ¢ (fu))—(x, 0) and it follows that (x,0)=Y. In the general case
fix (x,F) with F=¢(f). Let f have jump discontinuities at points {r;},%, in
[—N,0]. Define f,(#) =0if t<—N—-1/n, f,(0) =x, &) =f(@) if —N=t<—1/n
and |t—7;|=1/n for all j. Define f,(z) linearly in the remainder of the inter-
vals. Then f,€C,(—o0, 0] for n sufficiently large, f,(0)=2x for all » and
(F0), 0(fu))— (@, ¢(f)) in Y as n—oo and then N—oo. Q.E.D.

3. The Associated Differential Equations
Given any function g defined on an interval I let g, denote the translated
function g;(s) =g(¢+s) for all appropriate values of s. Given a function x:
[0,s]—>D(A) which is continuous in the norm |} ||, define

<ﬁsB”x(S—“)d”>(t>=fosB(u+t>x<s—u>du

=j;sB(t-{—s——u)x(u)du
for all £>0. By Lemma 2.3 the function
fosBux(s——u)du:fosBs_ux(u)du
is bounded and uniformly continuous on R*. If x(¢) is a solution of (VE) on
R* and if s>0, then
xs’(t):Axs(t)+L£B(t—u)xs(u)du—l—j;sB(t—{—s—u)x(u)du+fs(t)
or

Bl (0) =A@+ f tB(t—u)xmu)dqu( f SBux<s—u>du+fs)<t>

for all £>0. (This is essentially the same computation as (2.3) above.) When

such a solution exists, define a one-parameter map U(#) by
¢
(3.2) U@ o ) =(20), fir [ Bart—u)du).

Lemma 3. 1. Suppose solutions of (VE) with (%, f) in Y, are unique
whenever they exist. I1f the solution x(t) exists for a given pair (x,, f) in Y,
then (3.2) defines a map y (&) =U() (x4, f) on R* to Y such that

3.3) U(t+s) (2o, £)=U@) U(s) (%0 f)
for all t,s>0.
Proof. Let {f,} be a sequence in C,(—oco, 0] such that (f,(0), ¢(fn))—

(%9, f) in Y. Then in particular, as n—oo

f_:B(S—u) Fulutt)ydu= (@ (fn)e) (5)—=S2(s)
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uniformly in s>0. If we put g,(w)=fr(u+t) on —co<u<—¢ and gn(u) =2(
+u) on —t<u<0, then Lemma 2.3 can be applied to see that (x(2), ¢(9,)) is
in Y. Furthermore the last equation above and the identity

(3. 4) <f:Bux(t——u)du>(s) —':f_otB(s—u)x(t—l—u)du

show that (x(2), ¢(gn))—> U@ (%, f) as n—co. Thus U @) (¥, f) is in Y for
each £>0.

To see that U(2) (x,, f) is continuous in #, note first that the coordinate
x(t) is even strongly differentiable, hence continuous. Since f is uniformly
continuous on R*, it is clear that f,(s) is continuous in # uniformly for s>0.
The proof of Lemma 2.2 is easily modified to prove that the function (3.4) is
continuous. Since (3.3) is essentially just (3.1) rewritten, the proof is comp-
lete. Q.E.D.

Formally the function y(¢) = U(t) (%,, f) = (x(z), F(¢,0)) with

F(2,0) = fi+ f ‘B (t—w)du,

is a solution of the differential equation
(DE) y'=Cy
where C is a linear map defined in Y with domain D(C)={(2, /)€Y : 2,€D
(4), f loc. abs. cont. on R* and the pair (Ax,+f(0), f'+Bx,) €Y} and with
(3.5) C(xo, f) = (A%, + 1 (0), 17+ Bay).
We will not pursue the question of when this formal calculation can be made
precise. Rather we shall reverse the situation to ask when information about
(DE) can be used to infer properties of solutions of (VE).

Definition 3.2. By a solution y(¢) of (DE) satisfying an initial condition
y(0) =y, we mean a function y : R*—D(C) such that y, ¥’ and Cy are all con-
tinuous on R*, y(0) =y, and (DE) is satisfied for all # in R*. Equation (DE)
is called well posed if the following two statements are true : '

(i) for each y,&D(C), there exists a unique solution y(z,¥,) satisfying
the initial condition ¥ (0, ¥,) =¥,.

(ii) if {y.} is a sequence of points in D(C) with y,—0, then for each t>

0 the corresponding solutions satisfy ¥ (¢, ¥,)—0 as n—oco.

If the continuity condition (ii) is satisfied with limit y (¢, y,) =0 (n—>0) ex-
isting uniformly in ¢ on compact subsets of R*, then (DE) is called uniformaly
well posed.

It is important to determine conditions which guarantee that D(C) is dense
as a subset of Y.

Lemma 3.3. D(C) is dense in Y if A is closed.

Proof. Let Y,={(f(0), ¢(f)) : f and f’ are in Cy(—oo, 01}. If (x, F)=
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(f0),p(H)EY,, then (x, F)eD(C) and C(x, F)=(Ax+F©0),¢(f")). Indeed

since
0N =[" Ba-97@ds= [ B fe-w)du

then ¢ (f) () =—B@)f(0)+¢(f) (). By Lemma 2.3, (A2+/(0), ¢(f)'+ Bx)

=(Ax+1(0), (/M) EY.
It will be shown that Y| is dense in Y. Let M(#) be a nonnegative, scalar,

© C* function with support in [—1,1] such that
f_llM(t)dtzl.
Given f&Cy(—0,0] let
£ = [ M(G=9/0) £5)ds.
Since A is closed, then
ar.0 =" M(@-9) AF6)ds

Thus f, and Af, are in C'. Since [|f.— f|l4—0 as e—0 uniformly for £<0, it

follows that (£,(0), ¢ (f))—>(f(0),¢ () in Y. Thus Y; is dense in Y,. Since

Y,CD(C) and Y, is dense in Y (by construction) the conclusion follows.
QE.D.

It would be very interesting to obtain other conditions which are sufficient
to force the density of D(C). The hypothesis of Lemma 3.3 is very likely too
strong, but is also sufficient in order that C is a closed operator.

Lemma 3.4. The operator C is closed if A is closed.

Proof. Assume that A is closed. Let {(x,, fu)} be a sequence in D(C)
such that (x,, fn)— (&, ), Axy+ f,(0)—>y and f,’+Bx,—g for some y in X and
some function g. Since A is closed and Ax,—y— f(0), it follows that x=D(A)
and Ar=y—f(0). From the estimates ||B(#)x,—B(®)x||<B ) ||x,—2|| 4 and ||z,
—x}|4—0, it follows that f,,/(z) has limit g(¢) —B(¢#)x. Furthermore

13
[ e ©ds=r0 =10 > £0 - FO),
so that
12
FO=FO+ [ 96~ Bs)u)ds.
It is now easy to see that (¥, f) =D(C) and that C(x, f) = (v,9). Q.E.D.
The utility of (DE) is immediately apparent from consideration of the fol-
lowing result.
Theorem 3.5. If y(2)=(x(),F(£0)) is a solution of (DE), then x(t)

solves (VE) with x,=x(0) and f(t)=F(0,¢t) for all t>0.
Proof. From x'(t) =Ax(z)+F(z,0) and the continuity of x/(z) and F(t,s),



Volterra Integral Equations in a Banach Space 171

it follows that Ax(z) is continuous on R*. The second coordinate of (DE) can

be written as
oF oF
—at—(t, S) =—a—s'(t, 5)+B(S)x(i) (Z,SZO).

Since 8F/0t is continuous in (¢,5) and since |[|B(s)x(®)]|<BG)Hx@) |4 with ||x
(2)||4 continuous in ¢z, then it follows from Lemma 2.1 that g(s)=F (s, —s) is

an absolutely continuous function of s&[0, ] and
¢ © =292 (19 =Bu-5)20.
One integration yields
F@,0)=F (0, t)-{—fotB(t—-s)x(s)ds.

This and the equation ' (¢) =Ax(t) +F(¢,0) give the required conclusion.
Q.E.D.

4. Theorems on Existence, Uniqueness and Continuity

Equation (DE) and Theorem 3.5 will now be used to establish some basic
properties of (VE). Given an operator D and a complex number A, R(4, D)=
(D—AI)"t will denote the resolvent of D at X whenever this resolvent exists.
Recall that the Laplace transform B*(A)x of B(#)x exists for all x in D(A) and
all 4 in the half plane Re A>0. Define p(4) = (A+B*(4)—AiI)"! at all points 4
such that Re >0 and such that the inverse exists as a bounded linear map on
X to X.

Theorem 4.1. For any A with Re A>0, p() exists ¢f and only if the resol-
vent R(A, C) exists. When p(L) exists with ||o(A)||<M(), then ||R(A, C)||<
K (1) where the solution of R(&,C)(z,¢9)=(x, f) is

4.1) 2=0) lerg* (D}, f= [ (Bur—g exp (~hu)du
and if A,=Re A is sufficiently lar ge,
4.2) K(A)<1+28%(0)) {4, +8*(0) A+ AL+[AD MQA) (1+49) 7D}

Proof. If R(A, C) exists and (C—AI) (%, f)=(z, ¢), then Ax+ f(0)—Ax=
z and f/+Bx—Af=g. Thus

7(2) =exp(Af) £0) + f exp(A(t—1)) {g () — B (w) ) du
—exp(At) {Ax— Ax-+2} +exp(Ae) ﬁ "exp(—Au) {g (w) — B () %) du

- f “exp(A(t—u)) {g () — B(u)a) dus,

or

(4.3) F@#) =exp(As) {(Ax— Ax+2+g* (A) ~ B* (D) x)
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- f "exp(—u) (g, () — B, () ) du.

Since f must be bounded on R* and since Re 4>0, the first term on the right
in (4.3) must be zero, that is

(4.4) {AI—A—B*()}x=—(2+g*(4)).
Moreover (4.3) reduces to
4.3 = fo “exp(—Aw) (Biz—g,) du.

It is assumed that R(4, C) exists and is bounded by some number K. Since
(z2,0) €Y, then with g=0 and any z in X, (4.4) has a solution x with ||x||<
K]lz|]. Thus p(d) exists and ||p(A)||<K.

Conversely assume p(4) exists with |[o(A)||<M. In this case it is easy to
see that (4.1) defines a linear map on Y to Y and that x=D(4). The compu-
tations leading to (4.4) and (4.3’) can be reversed to see that Ax+f(0) —Ax=z
and f'+Bx—Af=g. Thus p(A) exists if and only if R(4, C) exists.

To estimate the norm of the map defined by (4.1) first note that

Hxll<1lo @) lzll+lg* (D) <Mzl +]lgll/Re ) <M A+4,7) [z} +1lg1D-
Since Ax=2z+Ax—f(0), and A=4,+¢d,, then

fwB (t+u)xexp(—Au)du Sﬁwexp(——/llu)ﬁ(t-lru)dullx]IA

= (B)* (&) (lall +1Axl)) < (B)* (&) (lal | +11z+2x— £ O |])
< (B)* (A0 (x| A+1AD + =l -+ 11O D

for all t>0. Therefore
Hr@®H= U‘: (Bit+uw)x—g(t+u)}exp(—Au)du

<llglA, 1+ (B * () {A+ 2D [l =+ [zl [+ A |1}
For A,=Re 2 sufficiently large, £*(4,) <1/2 so that

£ ) 11<2llgll/A+28*(0) {(L-+]AD [ +112]1},

and

HAN<I1gl/A+B%(0) ((A+1AD [|x]]+112l1} +B*(0) {21191/ 44
+2B8*(0) (1+[AD {lx[1+1l2][}

< (B*(0) +1/4) (A14+28%(0)) [ (2, @) 1| +B*(0) (1+28*(0)) (1+]A]) [|][.

These estimates can be combined to see that (4.2) is true. Q.E.D.
Theorem 4.2. If A is closed, p(A) exists for Re A=2,>0 and ||p(A)||=0
(1+|Al%) for some k=0 as |A|—>c0 with Re A=4,, then there exists a dense sub-

set Y of Y such that for all (x,, f) in Y', (VE) has a solution on R*.

Proof. Since A is closed, C is closed and D(C) is dense in Y. Moreover
the hypothesis and Theorem 4.1 imply that R(4, C) exists for at least one
complex value A (in fact for 1 on a half space). Hence D(C") is also dense in
Y for all positive integers n. The hypotheses and (4.2) imply that there is a



Volterra Integral Equations in a Banach Space 173

constant L>0 such that for Rei>2, ||R(4, C)||<L(1+]||)**t. By Theorem
1.5 of Krein [4, p.341, (DE) has solutions for all initial values in D(C*¥**).
Apply Theorem 3.5 above to obtain existence of solution of (VE) on the same
dense set. QE.D.

Theorem 4.3. Suppose there exists w>0 such that for any t>0, any A=
w, any T >0, and any function x<=C([0, T], D(A)) with x(t)=0 for t>T we
have B@)x* () = (B@)x)*(4), that is

B fo "exp(—As)x(s) ds— fo T exp(—As) Bz (s)ds.
If A is closed, p(A) exists when A is real and A>w and if
lim sup (lnfle(2) 11/4) =0,
then for all (%, f) in Y and all T>0 the solution of (VE) is unique on [0, T]
whenever it exists.

Proof. The proof is accomplished by modifying a uniqueness proof for
differential equations, see Krein [4, pp.62-63]. Suppose for 2,=0 and f=0 that
there exists a solution %(z) of (VE) on [0, T1. Put x(¢)=0 for all £>7T and
integrate by parts in (VE) to obtain

ﬁTexp(—lu)x(u)du: — A lexp(—AT)x(T) +/1“fTexp(—Zu)x’ (w)du.

Rearrange this as follows :

(1.5) lﬁTexp(—lu)x(u)du-{—exp(—lT}x(T)—J:,Texp(-—llu)Ax(u)du
:f:j;uexp(—llu)B(u—v)x(v)dvdu
=foTexp<—xu)B<u—u>x(v)dudv.

Define o

E) _—:f:j:exp(—llu) B(u—v)x (v)dudv,

so that the right side of (4.5) can be written as
—E(A)+f°°f°°exp(—xu)B(u—p)x(v)dudu
o v
:——E(/l)‘+fmfwexp(—Au)B(u)exp(—lv)x(U)dudv
[] 0

—_EN)+ ﬁ mexp(—lu)( ﬁ wB(u)exp(——/lv)x(v)dv)du.

By hypothesis the last expression can be written as

-—E(/l)—l—f:exp(—Au)B(u)(ﬁmexp(—kv)x(v)dv>du=—E(Z)+B*(/1)x*(/1).

Put this expression in the right side of (4.5) and rearrange to obtain
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o (A) lexp(—AT)z(T) +E(L)) :ﬁTexp(—lu)x(u)du
or
T
o) @(T) +E@expT)) = [ exp(+ Aa)a(T—w)du
This means that
T
Ian exp(+Aw)x (T —u)du

Now

/lélnllp(l)ll//1+lnllx(T) +exp(AT) E(A)[I/A.

exp(AT) | EQ) || < f i f "exp(A(T—u)) B (u—0) || () || adudo

< f exp(A(T—)( f “ﬁ(u)du)<sgpux<v>imdu
= 4-18% (O sup {[[2 (0) ||, : 0<w< T).
ﬁ  exp(+Aw) 3 (T—u) du //1:0. This implies that (T—x) =0

Thus lim sup In

100
on 0<u<T.
The condition B(2) X* (1) = (B(#) X)*(4) is satisfied when B() =b6(¢) A with &

scalar valued since A is assumed to be closed. More generally if B(z) zi by(2)
=1

F,;A with b; scalar and L' and with the F; bounded linear maps, then the as-
sumption will be satisfied when A is closed.

Theorem 4.4. Suppose A. is closed, p(d) exists for some A with Re A>0
and for each pair (x4, f) in D(C), (VE) has a unique solution x(t, x,, f) on
R*. Suppose for each x in D(A), B{)x is strongly differentiable with B’ (¢)x
strongly measurable and ||B' (£)x||<T @) |lx||s for some locally integrable scalar
Sunction v. If

@6 e[ Berswatury Hdur S+

= (e 8) B ()T (b, 3o )+ f "Bt s—w) w2, f)

exists uniformly in s whenever (%, f) €D(C), then (DE) is uniformly well
posed.

Proof. First we show that for each pair (x,, f) in D(C) equation (DE)
has a unique solution on R* which satisfies the given initial condition at z=0.
Once (x,, f) is fixed put x(£) =x(¢, %y, f) for short. It is clear that the appro-
priate solution of (DE) should be (x(¢), F(z,0)) where

“7n F@, s)ZLtB(t—i—s—u)x(u)du+f(t+s) :ﬁ’3<s+u)x(t—u)du+f(z+s).

The only problem is to see that <x’ (t),%(t, O)> lies in Y for each £>0. Define



Volterra Integral Equations in a Banach Space 175

9@ =" @) +B@)x,. Since (x, f) is in D(C), it follows from the definition of
D(C) that f’ exists a.e. and that geBC(R*). From (4.7) it is clear that

t+h
{F<t+h,s>—F<t,s>}/h=h-l£ 0 ) du
+h'1ft {B@#+h+s—u)—B(t+s—u)}x(u)du

i3 i3
—I—h"lf B(h—}-s—u)x(t—l—u)du—h‘lf B(s+t+u)x,du.
0 0
From this and assumption (4.6) it follows that
) ¢
%f;(t, s)=g(+s) +f B (t4+s—uw)x(w)dut+ B(s)x (&) —B(t+s)x,
0 .

=g:()+9: @ 9)
where ¢, is defined in the obvious way.
If F is any function such that F/ and AF’ are continuous on [0,#] and are
zero on (—oo,0), then (F'(¢),p(F',))EY while

0 ¢
¢ (F"2) (s) =f_tB(5—u)F’(t+u)du-:fo B(t+s—u)F' (v)du

=ftB’(t+s—u)F(u)du+B(s)F(t)—B(t—}—s)F(O).

Since F can be picked to make sup{||x(s) —F(s)|]4 : 0<s<#} arbitrarily small, it
follows that (Ax,+f(0),9,(0)) is in Y. From the definitions of the function
g and of D(C) we know that C(x,, /)= (Ax,+f(0),g) =Y. Since Y is transla-
tion invariant, then (Ax,+f(0),g,) Y. Moreover by Lemma 2.3 any point
(2,0)=Y. In particular (x/(z),0) and (Ax,+ f(0),0) are in Y. It follows that

(@, 2F @0) )= @ ©. 09,6, 0)

= (@' (), 0) + (A%, + £(0), g:) + (A% + £(0), 9, (2,0))
—2(Ax,+£(0),0)
is in Y.

Since A is closed, then C is closed. The existence of p(4) implies the ex-
istence of the resolvent R(4,C) at the same point 4. The argument above
shows that for each initial condition (x,, f) in D(C) there is a corresponding
solution of (DE) satisfying this initial condition. The uniqueness of the solu-
tions of these initial value problems follows from Theorem 3.5 and uniqueness
for (VE). All of the hypotheses of Theorem 2.11 of Krein [4, p.54] are satis-
fied. The conclusion follows from that theorem. Q.E.D.

The existence of the uniform limit (4.6) can be obtained in several ways.
For example if the function 7(¢) in the hypothesis of Theorem 4.4 is of class
L!'(0,0), then the expression on the right in (4.6) is bounded and uniformly
continuous on any set of the form {(z,5) : 0<¢<T,0<s<co}. In this case
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(F7) o Bu () + f "Bt () du

defines a continuous map on [0, 7] to BC(R*,x). The integral w.r.t. ¢ of this
map will be differentiable in ¢ uniformly for s€R*. This integral is F(z,5)—
F(0,s). Therefore (4.6) will be true.

If (DE) is uniformly well posed, then for any 7>>0 there exists a constant
K >0 such that

4.8) Ha (, 0, SIS KI] (20, )]

uniformly for 0<z< T and for (%, /)= D(C). A similar inequality is true for
the second component of each solution. The hypotheses of Theorem 4.4 are
sufficient to guarantee the uniform well posedness of (DE). The continuity
(4.8) for the first component only can be proved under conditions weaker than
the hypotheses of Theorem 4.4. Some preliminaries will be needed for the

proof. Define
W={x, H eY:2=D(A)}
with norm
¢, A l=1lzl[+[lAz+ £ O) || +sup (|| F(®]] : £20}.
Clearly W is a normed linear space. If A is closed, it is also a Banach space.

Define
CW)={(y®,F(0)) : [0, T]>W : continuous}.

If A is closed, this is also a Banach space with the uniform norm.

Theorem 4.5. Suppose A is closed, (L) exists for some A with Re >0
and for each pair (x,, f) in D(C), (VE) has a unique solution x(t,x, f) on
R*.  Then the continuity condition (4.8) is true.

Proof. Define U,(t) (x,, ) =x(t, %y, f),

U (8) (o f) = f By (t—u, 00 £) dutf;

and U () (xy, ) = (U () (X, £), Us(2) (g, £)) for all £>0 and all (2, f) in D
(C). Then for any fixed T'>0, U(0) : D(C)—>C(W). Give D(C) the norm
Il (o, £) lle=11 (&, F)Ilx+]IC (o, £)|ly so that D(C) is a Banach space (see Lem-
ma 3.4).

We claim that U is a closed map on D(C) to C(W). Indeed if (x,, fn)—
(@ f) in D(C) and U () (@, fn) > (@), G(£,0)) in C(W), then put (x,(z),
Fo,(2,0))=U(t) (%, fn). The convergence assumptions imply that x,—x, in X,
X, )=y (2), Ax, () >Ay(t) and F,(t,0)>G(z,0) uniformly on 0<z<T. Take
limits in

20 (0) =0+ [ 14,(5) + P, (5, 0) ds

to obtain

(4. 9) (8 =+ fo Ay (s) +G s, 0)) ds.
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Note that for any pair (s, ),

Foltys)— f " Bts—w)y ) dut fo(t+s)

Falt+5) — Folt45)+ f *Bt+s—u) (@ (u) —y () du

< futs) — Fult+5) ||+ f B et s— 1) |20 () — 3 () || a0,

It follows that
13
G(,s) :fo B@+s—w)y (w)du+ fo(t+5).

This and (4.9) show that y(z) is the solution of (VE) for the pair (x,, fi).
This proves that U is closed.

The hypotheses insure that the resolvent R(4, C) exists for the given 1.
Given (%, f) in D(C), define (y,, 9) =R(4, C) (x,, f)eD(C?. For any >0
compute

U @) @, £ 1= U1 (2) (C—2I) (yo, 9) ]
<NU@) Co DIF 1A UL o 9]
Let 7, denote projection onto the first coordinate in W. Since U (¢) satisfies
(8.3) and U,(?) (yy, g) is differentiable, one can compute
7, CU@) (Y0, ) =U/ () W0 9)
=1hig)1(U1(t+h)—U1(t))(yo, 9/h
=£Lig)1 U@ (UR)~I) (Yo 9)
=U,#) Cyo 9)-
Therefore there exists a constant M, such that

UL @) @o, N7 CU @) (Yoo ) 1 +1AHTUL @) @or D) | ST @) (Yoo 9) | lw
uniformly on 0<z<T. But U(:) : D(C)—>C(W) is closed so there exists M,
>0 such that

HUL @) (o, I S MM Yo ) e
=M, M;(11y0» D 1 +11C(yo 9) 1D
=M M, (|| o ) +] (@, 1)+ 470 D)
<M (f| (e, HFRA, C) (0, HID
< M| (oo, O
with M, independent of # on [0, T]. Q.E.D.

It would be interesting to obtain other conditions on the coefficients of (VE)
which will insure that (DE) is uniformly well posed. For example if 4 is
closed and there exist constants M and K such that p(d) exists and satisfies
Ho(MDHM|<M@A—K)™ for n=1,2,3,+-- and A>K, is (DE) well posed?

5. Well Posed Problems
Defintion 5.1. We say that (VE) is well posed if for each pair (x,, f) in
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D(C), there exists a unique solution x(z, %, f) on R* and if for any >0, x(z,
%y, f)—0 as || (e, 1) |ly—0. Equation (VE) will be called uniformly well posed
if in addition the convergence of x (¢, 2,, f) to zero is uniform in ¢ on compact
subsets of R*.

If follows immediately from Theorem 3.5 that (VE) is well posed (or uni-
formly well posed) whenever (DE) is. Thus the conclusion of Theorem 4.4
implies that (VE) is uniformly well posed. Theorem 4.5 deals directly with
the question of whether (VE) is uniformly well posed without first considering
(DE). When (DE) is uniformly well posed, various standard facts concerning
solutions of (DE) can be interpreted as results about solutions of (VE). These
facts are summarized in the next theorem.

Theorem 5.2. If (DE) is uniformly well posed and if x(2) =x(t, %y f) is
a solution of (VE) with (x4, f) in D(C), then there exists X,=0 such that the
following statements are true:

(a) There exists M>0 such that ||x(2)|| <exp(R&) M || (2o, £)|| for all ¢

>0.
(b) o) =R, A+B*(R)) exists whenever Re A=4, and both
6.1) o () (x0+f*(/1)):ﬁwexp(—lt)x(t)dt
and
Ao+ioo
5.2) v @ =—@r) [ exp(ie) oD (ot £ (1) d
are true.

Proof. The conclusions follow from Theorem 3.5 above and standard re-

sults for abstract differential equations, see for example Krein [4, pp. 29-45].
Q. E.D.

Whenever (VE) is well posed, continuity considerations show that for each
t>0 the solutions x (¢, %, f) can be extended from D(C) to all (x, f) in Y.
This extension defines a bounded linear map on Y to Y. Whenever (x,, f) is
in Y but not in D(C), then x (¢, %y f) is a generalized solution of (VE) in the
sense that it is the limit of a sequence of actual solutions.

Define r(£)2,=x (¢, £, 0) for all 2, in D(A) where x(z, x,,0) is either a solu-
tion or generalized solution of (VE). From (5.1) and (5.2) it can be seen that
formally 0(A) is the Laplace transform of »(z) and that

(5.3) (2, o, F) =1 () o+ f o (t—5) F (s)ds.

‘We shall determine some conditions which insure that (5.3) is actually correct.

Lemma 5.3. Suppose R(A, A) exists for some A with Re 2>0, suppose
(VE) is uniformly well posed, suppose that for all x, in D(A), x(¢ %,,0) is
an actual (not a generalized) solution of (VE) and finally suppose that for
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each t>0, B(t) maps D(A?) into D(A). Then for each x, in D(A) and eaah
t>0,

() r’(t)x°=Ar(t)xo-l—ftB(t——u)r(u)xodu
and
%) P () wg=r (£) Ao+ f *p (t—u) B(w) %, .

Proof. TFirst note that (r) is automatically true from the definition of »(2).
Given %, in D(A) define

t
a(t)x,= A%, +f B(u) xydu.
[
For all x, in D(A?) define
(5. 4) T (t) 2= o+ f (= 5) 2 (s) wods.
0

Since A is closed and x,&D(A?), a(s)x,=D(A) and is continuous in s. Thus
T’ (t)x, exists. From (r) one can compute

T/(t)xo-:a(t)xo-l-ft{Ar(t—s)a‘(s)xo-l-ft_sB(t—s—u)r(u)a(s)xodu}ds
=a(t)x0+Aj;tr(t-—-s)a(s)xods+ftB(t—s)fsr(s——u)a(u)xoduds
—a () %o+ A (T () tg—15) +f”B(t-s) (T(s)g—14) ds

?
=AT(t)xo+f Bt—s) T(s)xyds.
0
By uniqueness of solutions of (VE), T (#)x,=r(£)%,. This and (5.4) imply that
t t—8
7 (8) %0 =00+ f #(s) {Axo-|~ f B(u)xodu} ds,
0 0
for all x, in D(A?. Since R(4, A) exists and since D(A) is dense in X, it is
clear that D(A?) is || ||a— dense in D(4). By continuity we see that the same
integral equation is true for all x, in D(A). By differentiating this integral
equation we obtain
z
r’(t)xozr(t)Axo—!—f 7(s) B(t—s)aods
. :

for all #, in D(A). This is (r'). Q.E.D.

Theorem 5.4. Assume that (VE) is uniformly well posed. If the hy-
potheses of the last lemma are true, if f: R*—X is a continuous function and
if h(t) is a solution of (VE) for this f and some x, in D(A), then

T
(5.5) h(D)=r() xo'+'f r(t—s) f(s)ds.
0
Proof. Apply to both sides of

h’(s)=Ah(s)+j;sB(s—u)h(u)du+f(s),
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the operator r(¢—s) to obtain

r(—s)h'(s)=r(@—s) Ah(s) +r (t——s)fsB(s—u) h(u)du+r(t—s) f(s).
Since (d/ds) (r (t—s)h(s)) =r(—s)h'(s) —r' (t—s)h(s), then this last equation goes
into

d t-s
25 r@=s)h(s)}) =r(t—=9) f(s) —j; r(t—s—u) B (w) h(s)du
+r(t—s)fsB(s—u)h(u)du,

Integrating w.r.t. s from 0 to # we obtain

[2
h(z) —r(t)xo——j; r(—s) f(s)ds
= [(ra=9 [ Bo-wh@duds— [ [ rt—s—w) Bah ) duds
:ftft—ur(t——s~—u)B(s)h(u)dsdu——ftft—sr(i—u—S)B(u)h(s)d“ds

The last term is zero. Q.E.D.

Corollary 5.5. If the hypotheses of Lemma 5.3 are true, and if (VE) is
uniformly well posed, then for any (x,, f) in Y the generalized solution of
(VE) can be represented in the form (5.3).

Proof. Since (5.3) is true for actual solutions, it is true on the dense set
of all (%, f) in D(C). The conclusion follows by continuity. Q.E.D.

Remark: B(#)=b(#)A with b= L' (R*) a given scalar function is an example of a
function B(f) which maps D(A?%) into D(A). This hypothesis seems restrictive. It would
be convenient if (5.3) could be proved without it.

6. More General Inhomogeneous Equation
Consider a Cauchy problem of the form

13
6.1) () = Ax (2) + f B(t—s)x(s)ds+ F (&)
o
for t>7 and 2() =f(¢) on 0<t<7, where F: R*—X is continuous and f: [0, 7]
—D(A) is || |[]4—continuous., The space Y constructed in section 2 above was

designed to facilitate the study of problem (6.1) when F=0. We shall now
enlarge the space Y so that a larger class of functions F can be studied.

Let BU=({F: R*—X, F is bounded and uniformly continuous on R*} with
sup norm |[F[|=sup{|[F(#)|| : 0<z<oo}. Define Y(U)={(x, ) : x=X and fe
BU} with norm [|(x, £)||=||=||+]|f]]. Again put

C(x, f) = (Az+f(0), f'+ Bx)
but with D(C)={(x, f) : x=D(A), f’ exists a.e. and f'+Bx<=BU}. Lemma
3.1 is still true with the same proof. The proof of Lemma 3.3 needs some
modification.
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Lemma 6.1. D(C) is dense in Y(U) if A is closed.

Proof. The set Y, constructed in the proof of Lemma 3.3 was dense in Y.
A simple mollifyer argument will show that BU'= {f€BU : f/BU} is dense in
BU. Thus the set {(x, f+F) : (x, f)€Y, and FEBU'} is contained in D(C).
Lemma 2.2 can be used to see that this set is dense in Y(U). Q.E.D.

The remaining results and definitions in sections 3, 4 and 5 are the same
with only minor modifications of the proofs (such as replacing Y by Y(U)).
This extension of the theory will allow the study (6.1) for any F in BU. If
we wish to study (6.1) on a bounded set 0<#< 7T, then it is clear that B(z)
and F(¢) can be defined outside of the interval of interest in such a way that
the theory can be applied to the resulting problem.

7. Examples of Well Posed Problems
Consider an initial value probelm of the form

7.1) o () = A (D) + ﬁ "b(t—s) A (s)ds+ £ (1), 3(0) =a,.

As before assume A:D(A)—X is linear with dense domain. Assume 7=1 (the
case ¥=0 will not work). Assume that 5(z) is a scalar function and that the
following additional assumptions hold:
(A1) A is the infinitesimal generator of a C,-semigroup V(¢), that is a
semigroup such that V(#)x, is continuous in x, uniformly for ¢ on
compact subsets of R*.
(A2) beCHR")NLURY).
(A3) f(2) is strongly continuously differentiable on R*.
Let 4, be a real number such that R(4, A)=(A—AI)"! exists for all 1 in
the half plane ReA>1,. If 1,>>0, then put z() =x(t)exp(—4,z) so that z/(¥) =
— 2z (2) +exp(—At)x’ () and

(7.1 2@ =(A—4,Dz() -%-ftexp(—llo(t——s))b(t—s)Az(s)ds

+exp(—442) f(2)
for £>0 with 2(0) =x,. The coefficients of (7.1’) also satisfy (A1)-(A3). These
two problems are equivalent from the point of view of existence, uniqueness and
continuity. Thus without loss of generality we shall assume:
(A4) R, A)=(A—AI)"! exists for Re 1>0.
- Lemma 7.1. If (Al), (A3) and (A4) are true, then for any x,&D(A),
W (@) =Au()+ 1), u(0)=x,
has a unique, strongly differentiable solution on R* with all of u(t), u'(t) and
Au(t) continuous. This solution can be represented in either of the forms:

w(t) = V&) ag+ ﬁ " Vit—s) £(s)ds
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or

() = V(#) @+ ATLF(0)) —A-1F (2) + f "V(e—s) A1 f1 (5)ds.

For a proof see for example Krein [4, p.135]. The next result is similar
to one claimed in [1, p.152]. The proof of the result uses the same techniques
as those used in [1].

Lemma 7.2. If (Al)-(A4) are true and if %, is a point in D(A), then
(7.1) has a unique solution on R*.

Proof. Fix any T>>0. Define d(z,) = {v:v maps [0, ] into D(A) and both
v(¢) and Av(¢) are continuous}. Since A is closed, it is easy to see that d(z,)
with norm |||v]||=sup{||v(2)|la: 0<21<¢t,} is a Banach space. Given v in d(%,)
define

¢
Sy (t) = f b(t—s) Av(s)ds
°
on 0<¢<¢,. The sw is strongly continuously differentiable with
(Su)’ (£) =5 (0) Av (2) + f "B (t—s5) Av (s) ds.
0

From Lemma 7.1 it follows that for any v in d(z,), i
W (D) =Au@)+ (S @) +F®)}, u(0)=n,
has a unique solution #=Sv which is again in d(,).
Since Sv is linear, we can decide whether or not it is a contraction map by
computing the norm when x,=0 and f(¢)=0. If |||»|||<1, then

llSov(t)HS_/:Ib(t—s)] 140 lds< [ 16()1ds,

while %,=0, f=0 and Lemma 7.1 imply that

I1sv@ 1= [ ve-sswods

< f NV =) 11800 () 11ds

SfthsIb(u)ldudssztu]b(u)ldu
0 0 ]
where M is a bound for ||V (|| on [0,T] and [0,£,]<[0,T]. The second

* representation in Lemma 7.1 can be used to see that
13
ASv(t) =Af V(t—s) A 1(Sw)! (s)ds+ AV () A~1(Sev) (0) — S (2).
[}
Since A is closed and A commutes with V(z), then

1| AS(2) || = f "V (t—s) (Sw)" (s) ds+Saw (0) — Sy (2) H

gfot [b(g)ids+uf: V(e—s) {b(O)Av(S)-!—ﬁs b’(s—u)Av(u)du}ds
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gﬁt |b(s)|ds+ﬁtM{|b(0)l+fos lb’(s—u)ldu}ds

gﬁtlb(s)|ds+M|b(O)[t+Mﬁtulb’(u)ldu.
Therefore
i< | 1o dut M@ it ") +18' () duf <1

for ¢, sufficiently small. The contraction mapping theorem implies the existence
and uniqueness of a solution of (7.1) on [0, ¢,].
Translate (7.1) by %, to see that y(¢) =x(¢+%,) must satisfy

y@={f i+ [ o6rt,—5) du(s)ds]

t
Ay + f b(t—s) Ay (s)ds,

with y(0) =2(¢,) in D(A). Since the term in brackets is strongly continuously
differentiable, the same argument can be repeated to obtain a solution on [#,
2t,], [220, 32,1, - until [Nz, T] where (N+1)£,>7T. Since T is an arbitrary
positive number, this proves the existence and uniqueness on R*, Q.E.D.

Theorem 7.3. If (A1)-(A3) are true, then (71.1) is uniformly well posed
on either of the spaces Y or Y(U). If in addition ’=L*(R"), then the cor-
responding differential equation (DE) is uniformily well posed.

Proof. We apply Theorem 4.5. Since R(4, A) exists for Re 4 large, then
A is closed. Moreover for Re 4 sufficiently large

A+0* (D) A—A={A—=AI](A+6*(A))} L+6%(A))
and
o(A) = (A+b* (M) A—AD)'=R@A1A+5*(2)) 71, A) (1+6*(4)) !

exists as a bounded linear map from X to X. Since 4(¢) eC'(R*), if (&, f)E
D(C), then f/(z)+5b(t) Ax is continuous and f’(¢) must be continuous. Thus
the last lemma implies the existence and uniqueness of solution of (7.1) for all
pairs (%, f) in D(C). All hypotheses of Theorem 4.5 are true, (A4 without
loss of generality), so continuity of x(#, %, f) follows.

If in addition & < L'(R*), then b=BU and

t
F®=()etb() 420 [ @)udv-wdu
defines a continuous map from R* to BU. Since
¢ ¢
fz+f bqu(t—-u)duzf-‘.-f Fy(v)dv,
0 1]

then (4.6) is trivial to verify. The second conclusion follows from Theorem
4. 4. Q. E.D.
Corollary 7.4. Under the hypotheses of the last theorem, each solution or
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generalized solution of (7.1) can be written in the form
¢ .
x(2) =r(t)x0+f r(t—s) f(s)ds
o

where r(t)x, is the solution of (7.1) when f(¢)=0.
Proof. Corollary 5.5 applies. Q.E.D.
The first part of Theorem 7.3 can be generalized as follows. Let A and f
satisfy (A1) and (A3). Let b;(t)=C!(R*) with &; and &'; in L'(R*), let E;:
X—X be a bounded linear map, and let A;:D(A)—X be linear maps with
[|A;z||<K||x]|4. Then the equation

t /N-1
7.2 ¥ () = Az (&) + En () + ﬁ < ) bj(t~s)Aj>x(s)ds
+ ﬁ *by (=) Exx(s)ds+ £ (&)

has a unique solution on R* for each initial condition z, in D(A). The proof
is essentially the same as the proof of Lemma 7.2. The proof of the first part
of Theorem 7.3 generalizes once the following lemma is proved.

Lemma 7.5. Under the hypotheses above
N-1 -1
o) ={A+ 2 b2 () A+ Bt bu* (D Ey—A1}
=1

exists for A positive and sufficiently large.

Proof. Given y in X we want to find an « so that
N-1
{A—U+E0+ S () At b () EN} r=.

For A real and large, say A>2, R(4, A) exists and satisfies a bound ||R(4, A)||
<M1 Put z=(A—Aix or x=R(4, A)z so that

N-1
(A——/lI)ac:y——<Eo+ jg}lbj* (WA ;+by*(4) EN>x

becomes

(7.3 2=y~ (Eg+230;* (D) A;+by* () EN)R(4, A) 2.
Therefore

Hzll <yl 4+ (1E - 1ox* (D HENID IR @A, A 21 +2016,*(A) | AR (4, A) 2]

<yl + (N Esl |+ [6x* () L IENI]) (M) (121
+206%(A) [K(||AR (A, A) 2] +]|R (4, A)z]|)

Since ||AR(4, A)||=||I+AR(4, A)||<1+M if A=4, then

Nzl < llyll+ (M) ) 2] [+ 20165* (A | K L+ M+ M) || 2] < |ly|| +|2]]/2
for A sufficiently large. By the contraction mapping theorem there exists a
continuous linear map F(4) such that z=F(d)y is the unique fixed point of
(7.8) in X. Since z=(A—4I)x, then x=R(4, A)F(4)y solves the original equa-
tion and p(A) =R(A, A)F(A). Q.E.D.

Corollary 7.6. Under the hypotheses above, (7.2) is uniformly well posed
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on either Y or on Y(U).

Next we consider an example in Hilbert space. Qur results are different
then but motivated by recent results of Hannsgen [9]. Most of our hypotheses
will be stronger than those of Hannsgen but our hypotheses on f will be weak-
er. The necessary background material about spectral resolution of the identity
can be found in [11].

Lemma 7.7. Let X be a Hilbert space with inner product ( , ) and let
A a densely defined, closed, symmetric, linear map with (Ax,x) <2A,(x,x) for
some real number A. Let {E,} be the spectral resolution of the identity corre-
sponding to A and assume that

Ao
B(t)x:f a(t, NdEx (a scalar valued)

with B(t)x strongly continuously differentiable when x is in D(A). Finally
suppose there exisi two scalar functions By and B, in L*(R*) such that |a(t,2))
<Bo(2)|A] and |0a(e, 1) [0t| <P (£)|4] for all t=0 and all A<A,. Then for any
%y in D(A) and any f satsisfying (A3) the initial value problem (VE) (with T
=1) has a unique solution on R*.

Proof. Recall that for any function g
Gu= f "W
is a linear map defined for those and only those x such that
1Gall2= [ 19 ) PaE, @, ) <co.
Moreover when g(4) =4, then G=A. Thus if x is in D(A), then
[ et vama <2 [ 120aB @ 0 =8 0% vl <o

Similarly ||B’(z)x||<B,(z)||Ax|| when x=D(A).
The proof of Lemma 7.7 proceeds by the same general outline as the proof
of Lemma 7.2. First note that when 4,>0, then (VE) can be replaced by the

equivalent problem
ZW)=(A-1Dz() —}—fotexp(—l,(t—s))B(t—s)z(s)ds—i—exp(—/lt)f(t)

where 4,>>4,. Define d(z,),S, and S as before. When |||[s]]|]<1, the estimate
on Sy is replaced by

HSov(t)HZH‘f:exp(ll(s—t))fla(t—s, AdE,p (s)ds

I1B@)x||?=

< f exp(Ay (s—2)) Bo(t—5) || Av(s) ||ds
Sftexp(lll(s——t))[:?o(t-—s)ds.
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The rest of the estimates are modified in a similar way to complete the proof.
Q.E.D.

Theorem 7.8. If the hypotheses of Lemma 7.7 are true, (VE) is uniform-

Iy well posed.
Proof. In order to apply Theorem 4.5 it remains only to show that g(4)

exists for at least one A. It is easy to see that |(B*(A)x, )| <B*(A) (, x).

Thus

({A+B*()}x, x) = (A, 2) + (B* (D)=, 2) < (Ag+Bo* () (%, 2).
Since B,=L!'(R*), then B *(A)—0 as A— +oo. Therefore p(d)=(A+B*(1)—
A1 exists for A real and sufficiently large. Q.E.D.

8. When A Generates an Analytic Semigroup
We shall continue the theme of the last section here. Under stronger as-
sumptions on A in (7.1) it will be shown that the smoothness hypotheses on
b(¢) can be weakened. Assume the following:
(A5) A generates an analytic, uniformly continuous semigroup V(z).
(A6) beL'(R*) and for any T>>0, the integral

t
t“lf |6(u) | dusL (0, T),
0
the integrals

j:s“lﬁslb(t—u)lduds, fotﬁt—s]b(s)—b(s+u)|u“dsdu

exist uniformly on 0<£<7 and the last integral above tends to zero
as t—0.

(A7) (%, f) is in D(C).

The following result is known, see for example Krein [4, p.138].

Lemma 8.1. If A satisfies (A5), x, is in D(A) and the integral

@®.1) f NGy —F@) |t du

conver ges uni formly on 0<t<T, then
W (@) =Au(®+f(), u0)=x
has a unique solution on [0, T1. This solution can be written in the form
t
() = V(&) tot f V(t—s) £(5)ds.
[}
Lemma 8.2. If (A5)-(A7) are true, then (7.1) has a unique solution on
R*,
Proof. Define d(z,), Sy and Sv as in the proof of Lemma 7.2. For v in
d(z,) it will be shown that Sy satisfies condition (8.1) above. The definition
of S, allows us to compute

ftHS"v(t—“) "‘Sov(t)llu“du:ftu—l

ft—ub(t—u—s)Av (s)ds
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-—ftb(t——s)Av(s)ds du
©.2) slllvlll{ﬁtﬁt—ulb(t-—u—s)—b(t—s)lu“a’sdu

+fu-!ﬁ"|b(u—s)[dsdu}
g[HvIH{J:tj:—u|b(s)—b(s—{—u)lu“duds-{-f: u—tfo“lb(s);dsdu}.

This computation and (A6) prove the assertion.
Next note that f satisfies (8.1). Indeed if f/+bAx,=g, then

ﬂt Hf@E—s) ——f(t)|[s“‘ds:f0 ‘U:) (g (w) —b(w) Axy)du
~[* oty —b Ay au

s™ds

ﬁ " (9w —bw) Axy)du|d

fngnds+f [ 16| dudsl|Ax,|

sugnwﬁ s“ﬁ 16 (t—u) |duds]| Az,||.

Assumption (A6) implies that the last integral exists uniformly for z&[0, T1.
These assertions and Lemma 8.1 imply that S:d(z,)—d(z,).

In order to see that S is contracting it is enough to show that if x,=0 and
f=0, then [|S||<1. In this case, if |||[»]||=1, we have

(180 (2) || = fot V(t—s)ﬁsb(s—u)Av(u)duds

sf IV G=9)11 [ 1oGs=a0) 1140 () l1duds
sttﬂslb(u)Iduds:Mftulb(u)Idu

where M is a bound for || V()]|| on [0, 7]. Since V is an analytic semigroup,
we can assume for the same constant M that [|[AV(#)||<M:i™ on [0, T], see
Krein [4,p.75, Theorem 3.9]. Since

t H
ASp(£) = fo AV (5) Sy (t—s) ds= ﬁ AV(S) (S (t—5) —Sew (8)} ds
+ftAV(s)S.,v(t)ds,
then
HAS”('?)HSLtMs'l[]Sov(t—S)'“Sov(t)Hds+1l(V(t)“I)SoU(t)H-

Let e—0* in (8.2) and use the result to see that
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|]Asv(t)nngotﬁt_s}b(u)—b(u+s)]s-lduds+MJ;”s-lﬁs|b(u)1duds

+ L+ M) IS () 11,
Since |||v]||=1, then

¢
I1Sw@li=| [ 6G=s5) dvts)ds
[
From these estimates it follows that

|}S||ng:°u|b(u)}du+ (1+M)f:°|b(u>|du+Mﬁ’°s—xf|b(u>[du+77(z(,)

where

sfl \b () |du.

77(t0)=sup{j;tﬁt—slb(u) —b(u+s)|s‘1duds=0£t£to}.

Clearly ||S|]<1 if ¢, is small. Thus there is a unique solution on [0,%,]. As in
the proof of Lemma 7.2 the solution will be extended across the interval [0, T']
by translations. Q.E.D.

Remark: If near t=0, b(t)=¢"% for some a=(0,1), the (A6) will be true. First
note that

s
s‘lf 570ds=5"151"%(1—q) 1= (1—a) 57
0

is in L'(0,T). Since b(#)=t"%<L?(0,T) for any p=(1,a™ 1), then the integral of b(¢) is
locally Holder continuous with some exponent . Therefore when ¢>0

3 s 12

f f s71(t—u) ~aduds= f s (—s5) 10— 11-0} (1—g) ~1ds
& [ €

< f "s1KsTds < (K/r)tr
and
12 t—u 12
f fo ]b(s)—b(s+u)|u‘1dsdu=f w I (t—10) 10 -0 — 10} (1— ) ~Ldy
<[ " () 10— 1170} (1—a) Y+ 110 (1— )2

¢
gf Kuldu+tt-¢(1—a)~2
< (K[r)tr+t1-%(1—a)"2—0 (t—0).
k3
These estimates can be modified to include the more general case b(t):jz t-2ig;(t) with
=1

0<a;<1 and g;(¢) locally Holder continuous.

Theorem 8.3. If (AB)-(AT) are true and b= L'(0, ), then (7.1) is uni-
formly well posed on Y or on Y(U).

Proof. Given Lemma 8.2 it remains to show that p(1) exists for at least
one A with Re 4>0. This was already shown in the proof of Theorem 7.3
under weaker assumptions on A. ' Q.E.D.
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9. Some Perturbation Theory
Consider (7.1) and a perturbation equation of the form

(CY 2 () =Az(t) +A,2() —l—ﬁt (6(t—s5) Az(s) +by,(2—5) Asz(s)}ds+ f ().

Theorem 9.1. Suppose A satisfies (Al), b and b, satisfy (A2), A, is
bounded and linear on X and A2 D(A)—X is a linear map such that ||Ax||<K,
|z{|a for all x in D(A). Then (9.1) is uniformly well posed on Y or Y(U).
Moreover if r(t)x, is the solution of (7.1) with x,€X and f=0, then solutions
of (9.1) satisfy

9.2) z(t)::r(t)xo—!—fotr(t——s) {Alz(s) +ﬁt bz(s——u)Azz(u)du—i-f(s)}ds.

Proof. Apply Corollaries 7.6 and 7. 4. Q.E.D.

Theorem 9.2. Suppose A satisfies (A5), b and b, satisfy (A6), A;:D(A)
—X is a linear map such that ||Ax||<Kyl|x||s for all x in D(A) and suppose
for each €>0 there exists a continuous ¢, on X such that

[|Ax]| <o, (x) +el|Az|] (x in D(A)).

Then (9.1) is uniformly well posed on Y or Y(U) and (9.2) is true.

Proof. By Theorem 7.2 in [4, p.149] the operator A;=A-+A, satisfies
(A5). If l|x|ls=1lx])|+]|Asx]], then by the closed graph theorem there exists a
constant K,>0 such that ||{x]|,<K|lxll; for all z in D(A)=D(4;). Thus

9.3) w (&) =(A+ADw() +ﬁtb(t—s) (A+Apw(s)ds+ f(2)

is uniformly well posed (by the results in section 8). A simple modification of
Lemma 8.2 will prove existence and uniqueness on D(C) when (9. 3) is perturb-
ed by terms '

¢ ¢
——fo b(t—s)Alw(s)ds+f; by (t—s) Aw (s)ds.

The existence of p(1) follows from the proof of Lemma 7.5. Therefore Theo-
rem 4.5 applies. Q.E.D.
Now consider a well posed equation (VE) and a perturbed equation

9.4) 2 () =Az(@) +Az(¢) —I—j: {B(t—s) +b,(2—5) A} 2(s)ds+ f(2).

Theorem 9.3. Suppose (VE) is well posed on Y(U), A is closed, B(i)x
is strongly continuously differentiable when x is in D(A) and (5.3) is true. Let
0(R) exist for some value A, with Re 4,>0, let A;: X—X be a bounded linear
map and let A,:D(A)—X be a linear map such that ||Ax||<Kyl|x]la on D(A).
If b, satisfies (A2), then (9.4) has a unique solution for all initial conditions
on D(C,) where

Ci(x, f)=((A+ADx+£0), f'+ (But+buds)®).
Proof. The hypotheses imply that for any (x, f) in D(Cy), feC(R").
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Let d(z,) = {v: [0, 2,]—D(A) :v,v’ and Av are continuous} with norm ||]»|||=sup
{lo()a:0<s<t} +sup{|lo’(s)]]:0<s<¢}. Given v=d(s) let Sy denote the

solution of

2 (8) = Az (d) +LLB(t-—s)z(s)ds+Alv(t)+ﬁtb2(t—s)A2v(s)ds—l—f(t)

with z(0) =%, and (&, /) €D(C). Since (VE) is uniformly well posed on

Y(U), Sv exists and is in d(#). Moreover Theorem 5.4 implies that
Sv(t)zx(t)-i—ftr(t——s) {Alv(s)—|—fsbz(s—u)sz(u)du}ds
1] 0

where

¢
x(t) =r(t)xo—l-j; r(t—s) f(s)ds.

In order to see that S is contracting assume x,=0, f(#) =0 and |||»}||=1.

=sup||r()]] on [0,%,], then
HSv(t)HSIOt Hr(t—s)ll{nAmmu|n+ﬁs ibzcs—u>|1<zmvmdu}ds

< K|, |t+ KK, ﬁ “ by () ludu.

For #, small, the last number of the right is at most 1/4.

Let Ft)=Aw(®) —[—ftbz(t—s)sz (s)ds so that
[

F©) <] Ay] mvm+ﬁ’lbzu—s)lemvmdss11A1||+K2ﬁ°1bz<s>1ds,

F/ () = A’ (8) +5,(0) Ao (2) + ﬂ bl (2—5) Ay (s)ds,
and
IF @< 1A +16:0) | Kot Ks [ U163 6)1ds
Note that
Sv(t)::j;tr(t—s) {F(o>+ﬁs F’(u)du}ds
:fotr(s)F(O)dﬁLﬁtﬁt’sr(u)F'(s)duds.
Since A is closed, the A applied to the first term on the right equals
L’Ar(s)F(O)dszﬁ’ {r’(s)F(O) ——ﬂsB(s——u)r(u)F(O)du}ds
—(r () =D F(0) —j:j;sB(s——u)r(u)F(O)duds.
It follows that

HAﬁtr(s)F(O)ds s{(K+1)+ﬁtﬁs/3(s~—u)Kduds}HF(O)H

If X
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<K+ 14K [up@a IFO) 1.
If A is applied to the second term, we get
ftft_sAr(u)F’(s)duds
=ftf‘_s {r’(u)F’(s)—fuB(u—a)r(a)F’(s)do‘}duds

=["ce-o-nr©a— [ [ [ Bu-or@ P doduds,

so that

HA‘ﬁtﬁt—sr(u)F’(s)duds sﬁt" (KA+1)||F () ||ds

+ﬁtﬁt—sﬂu[)’(u—a)K||F’(s)]ldoduds

Lo to
SsupllF’(s)H{to(K—i-l)—}—Kf f uB(u)duds}.
0<s<tp 0 0
These estimates imply that ||ASv(£)|l<1/4 if £, is sufficiently small.
(Sv)'(t):{ftr(s)F(O)ds+ftft—sr(u)F’ (s)duds}'
0 [} [

=r(t)F(0)—I—j;tr(t—s)F’(s)ds,

11(S)" ()| < KIIF (O) ||+ K f “lIF? (5) | ds<1/4

if ¢, is small and |||[v]]|=1. By combining these estimates it follows that for ¢,
small, ®,=0, f(z)=0, |||v]||=1 we have |||Sv]|]|<3/4. Since S is contracting,
there exists a unique solution of (9.4) on [0,£,]. Existence and uniqueness on
any finite interval can be proved from this contraction argument and transla-
tion. Q.E.D.

Corollary 9.4. Assume the hypotheses of the last theorem. Suppose there
exist Ay and M such that p(A)=(A+B*(2) —AI) ! exists and

9.5) Ao (D<M and |[o(D|I<NQ) (A=2)

where N(A)—0 as A—oco. Then (9.4) is uniformly well posed on Y(U).

Proof. In order to apply Theorem 4.5 it remains to show that p,(1) = (A
+ A +B*() +b,%(A) A,—AI) "1 exists. Given y we want to solve

(A+B*(A) —A4+8,*(A) Ay + A=y
or
(A+B*(A) —ADx=y— (A, +b,* () A,)x.
Let z=(A+B*(A) —AI)x so that
z=y—(A;+5,5(4) Ay) 0 () 2.
Now
H(Ai+8.* (2) A) 0 DI TTA o (D) 11+ 18* () IK([Ap (W) [+ 110 (A) [])
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<[JAHINQ) +16* (D IK(M+NA)) <1/2
if A is sufficiently large. Thus z2=G(d)y exists and x=p(1)G(A)y solves the
original problem. In particular p,(1) =p(1)G(A) exists for A real and large.
Q.E.D.

It would be intersting to know whether or not conditions (9.5) are automat-
ically true when (VE) is uniformly well posed. They are automatically true
when the problem (DE) corresponding to (VE) is uniformly well posed.

Theorem 9.5. Assume the hypotheses of Theorem 9.4. Suppose the prob-
lem (DE) corresponding to (VE) is uniformly well posed on Y(U). Then
(9.4) is uniformly well posed on Y(U).

Proof. Recall that ||R{4, C)||<M,(A—24,) ! for A>A, where M, and 1, are
fixed real constants. Also recall that CR(A, C) =I+AR(4,C). These remarks
and (4.1) imply that for any z in X,

lo(A)2||<IR(A, C) (2,0) || < My (2—29) 7! l2]],
and Ap(AD)z+B*(A)p(A)z=z2+2Ap(A)z. The triangle inequality implies that
Ao (W) [|—B* Q) (|IAp (WD + 1o (W) 1) <11 Ap(X) +B* (1) p ()]
=|[I+Ap(A) || <1+ AM(A—24y) N
For A real and sufficiently large 1—f*(1) <1 so that
HAo (D) 1< A—B* (1)) T (1+MyA(A—2g) 1+ B*(2) My (A—2,) ) < M,.
Thus Corollary 9.4 applies. Q.E.D.
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