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Introduction. Let #%(z) (0<z<1) denote the set of phase functions ¢(x, &)
such that ¢(x, &) are of class C* in R**=R"X R? and J(x, &) =¢(x, &) —x-& satisfy

1lo= 2 sup {7i(x ey} <=,

atfls
For ¢,(x, &) e #'(zy), j=1,2, - - -,v+1, - - -, such that z.=3,7., r;<1, (£1/8), we
define {X7, &Z{};_,(x°, &*') for any v as the solution of the equation

ijVE¢j(xj_l> Ej)a
Ej:Vz¢j+l(xj9€j+1)5 j:1527 MRS 2

Then, Theorem 1.4 of the present paper is the fundamental theorem concerning the

property of the family of solutions {X7, 57};_,, v=1,2, - - -, whose proof is given in

[10]. The multi-product @,, (x, £)=@:¥d.t - - - £, .(x, &) of phase functions ¢, ¢,,
-+, @,,, is defined by

D,.,(x", &)
=2 (6,7 B)—X]- B+ ¢, (X, B (X)=x").
=

As the subset of 2%(z) we define the class & (c) (1/2<<p<1) by the class of
phase functions ¢(x, £) (€ 2°(z)) such that J%)(x, &) e S%~!*! for |e+ f|=2, and often
set P(r)=2\(z), where ST(— co <m<oo) denotes the usual class S™,_, of symbols
of pseudo-differential operators p(X, D,).

The purpose of the present paper is to represent the product P, , P, ;.- - - P,,14,.,
of Fourier integral operators P, , with phase functions ¢, £,(z;) and symbols
pi(x,8) e S by a Fourier integral operator Q,,,,,,, with phase function @,,,=
bkt #g,.. and symbol q,,,(x,8) of class ST+ (m,,,=m,+my+ - - +m,.,.).
As an application we represent the fundamental solution E(z,s) for a hyperbolic
system
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L=D,4+92()+ B(t) on [0, T']

with characteristics of variable multiplicity by Fourier integral operators of multi-
phase, where

(1, X, D,) 0
D(t)= -
0 zl(tu X) D,t)
(At x,8) e ([0, T}, 8Y, j=1, ---, D)

and

B(t):(bjk(ta X’ Dz iﬂ::%)
(bjk(t: X, S) € gw([o’ T]a So)’j’ k= 1> R l)'

Here, S™=S7" and p(t, x, &) € ([0, T]; S7") means that p(¢, x, &) belongs to S™ for
any fixed ¢ € [0, T] and is k-times (S ™-valued) continuously differentiable with respect
to t on [0, T].

Using this fundamental solution E(f,s) we can get a generalization of the re-
presentation theorems obtained by Ludwig-Granoff [11] and Hata [4] for the solution
U of the Cauchy problem

{LU:O on [0, T1,
Ult=0: an

and get a theorem concerning the propagation of singulalities of the solution U.

The fundamental solution E(¢,s) is obtained by the Levi method, and in the
series of the successive approximation for E(z, s) each term is represented by Fourier
integral operators of multi-phase. We should note that in this process we only solve
eiconal equations, and make use of the calculus of Fourier integral operators of
multi-phase instead of solving transport equations.

§1. Main results on calculus of phase functions

In this section we review the main results obtained in [10] concerning multi-
products of phase functions.

Definition 1.1. We say that a C=-function p(x, &) in R*=R"X R? belongs to
the class S7 (=87,_,) for 1/2<p<1 and — oo <m< oo (c.f,, [5] or [7]), when we
have for any multi-index a«=(a,, - - -, &,) and f=(B,, - - -, B,)

|PE 0, OIS C, pEpm e tmoteral,

Here
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. 0
@W=Dfg*p, D, =—i—— 0, = .
Pig ¥4 ; o, ¢ 2,

The class S7 makes a Fréchet space with semi-norms
|pli™ = max sup {| p@(x, O|/EHm "+ mwl=rfly  (1=0,1, .- -).
la+ 8ISl 2,8

We set S ={)_wcmee Sy and S™=S87.

Definition 1.2. i) We say that a real-valued C*function ¢(x, &) in R*" belongs
to the class #%(z) (0<r<1) of phase functions, if we have for J(x, £)=d¢(x, &)—x-&

(L.1) b= 51 sup {15 HIKE )<,

where x-§=x§,+ - - - +x,§,.
ii) We say that a phase function ¢(x, &) of class £%(z) belongs to the class
2Z,(v) (112<p£1), if J(x, &) belongs to S;((2)) in the sense:

(1.2) Jgx, & e Syt for |a+pl|=2

(c.f., [8] and compare with [6]).
For J(x, £) e SX((2)) we introduce semi-norms || J|;, /=1,2, - - -, by

1.2y 1=t 23 sup {[ TG0, G emeteraioay,

3<la+fl=2+1

Then, S;((2)) makes a Fréchet space with these semi-norms.

Remark. 1In [10] we denoted 2'(z) by Z(r). In the present paper we often
write 2,(7)=%(z).

Definition 1.3. Let ¢, belong to #°(z), j=1,2,---,v+1, ---, with 7,,,=
St =N =1, (£1/8).  We define the multi-product @, ,,(x, §)= ¢, }d,#
- - #6,.,(x, &) of phase functions ¢,, - - -, @,,, by

(13) &, &)= 2 (p(XI™ L ED—X7-ED+ (X2, 87 (X)=X),
=
where {X7, B}, (x° &) is defined as the solution of the equation

(1.4) {X" =g, 80,

‘Sj:ngst(xj;SjH): ]=1: crr, Y
Vep="0u) - - -, 0,0, Vop="002,9; - - -, 0, 9))-

This definition is justified by the following
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Theorem 1.4. Let ¢, belong to #'(z,), j=1,---,v+1, ---, with 7,<7,<1/8.
Then, the equation (1.4) has the unique C'-solution {X], 8iY;_, (x°,&**") in R*™, which
satisfies

D3N T (050 — Xi)
j=1 la+g|s1
4 grryttlel|ge, 10,08 — B}
(1.5) <8+, (K=t Br=g),

i) HEHKEHSKET (=L,
CHENTSD SE LG A= HE XGRS L M e
G=1, ---,v),

where V.f =0, f, 52100, Ve f =, fi 510000 for a function f="'(f,, ---,f,) (see
Theorem 1.7 of [10]).

Theorem 1.4'.  In Theorem 1.4, furthermore, we assume that {J,[z;}7_, is bounded
in S;((2)). Then, for any a, 8 there exist constants C,,, and C, , independent of v such
that

D)3 {CEryiiamatersi o e o8(XT — X{7)|
=1

+<§v+1>—1+Ial—(l—p)(|a+ﬂl—1) Iaguﬂaﬁo Eﬁ_Eiﬂ)l
(16) éca,ﬂfw—l (ia_I—ﬁlzz))
ii) <$y+1>]a]~(l‘p)(la+ﬂl~1) !agvﬂag‘)Xﬂ
_|,_<$”+1>—1+|9I|—(l—p)(la—i—ﬁl——l) |agy+lagogﬂ
éC;,ﬂ (ta+ﬂ|22)7.]=15 oy V.

We give only the sketch of the proof of Theorem 1.4 below in four steps.
The detailed proof is given in [10].
1) Set

yj:xj_xj719 ”j:Ej—§j+l (j___l: v '9”)9
(1.7 Do=0" -7y, ),
Vi=yte -y =gt dy =1

Then, the equation (1.4) is equivalent to

(1.8) {f,-(y, 7; X, &= Y =V (X' + 37, +£4)=0,

gj(ys 77; xoa §v+1)577j_71‘,j+1(x0+)7j5 7:]j+1+5v+1):0
(.)70:09 7:]y+1:0;j:1: v ',U)-
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Assume that for a fixed (x° &*') e R** we have a solution (y,7). Then, we
have by (1.8),

[77j|§2']~+1<77j+1+$”+1>, ]:1, e,

Hence, using,

<7:)j+1+§u+1>§|;j+11+<$»+1>§k:§1 ]pk|+<év+l>’

we have

:ICZ:: CZ; Tj+1> b+ (ZD: Tj+1><§”+l>

i=1

9
ST £ |4 7,.1K8 ).

So we get >%_, |7'|<$<¢&*">. Consequently, if we set for a fixed (x°, &*!) ¢ R*"

(1.9) Z={ov e R 5 s ke,

we see that the solution (, ) can be found in ] if exists.
II) For (y,7) € 2 we define the norm |[(y, )| by

(1.10) (0= Z A/ 7]

Consider a mapping 7: 2 > (y, p)—(w, 7)=T(y, n) € X defined by

{Wj:VEJj(xO“FJ_/j_I, 7:]j+§u+l)’

(1.11) 4 o
T]:szj+1(x0+y]3 77]+1+§v+1)5 ]:1’ MARPS

Then, we see that the mapping 7T is into and contractive. So the unique solution
p)=0" -, ¥, - -, 7)) of (1.8) is obtained as the fixed point of the mapping
T. Then, setting x’=x"+7’ and &/=%"+&"*" we get the unique solution of (1.4).

IIT) We set for any point (2°, {Z/, ¥};_,, y**") with the solution {Z], ¥7/};_,
for (2°% )

aj:VJ;VEJj(Zvj_l’ v, bj:VfV;‘Jj(Zvj_ls rh,
cj+1:‘7x‘7x']j+1 Zja wx{+l)9 dj-{-l:VSVij-)-l(Zjﬁ w};}#l)
(Z,(,):ZO, w‘:+l:,‘pu+1)’

(1.12) {

and set.
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(1.13) =V " nSo8o08) g (zizi W W, ).

(1 Q0 e 0 : —b, ...-b1 ....... —bl A
~—e '
_‘az\\ 1 - \\~\\ 0 : 0 .~ —bz ~— —bz
. e S —_
ST E e
pe| G Te et 0 et
]
—C, 0 e 0 : _d2 ........ __d2
i
—G —C O -vvver 0 : 0 - 1 \—‘ds """ “ds
\\\\ \\\\ i \\\\\ ~\~\‘§
=~ 0 e
| —Chs1 —Cpp1 e T —Cyi1 ll 0 c---- ~~.0 1 ]

Hence, we have det(H)=£0, since 0<(1—z)*"<det(H)< (1+7,)*" (see
Proposition 1.5 of [10]). So by the implicit function theorem we can prove that the
fanction {X7 — X7, B/ — F{*}4_, and consequently {X/, Z7};_, (x°, £&*") are of class
C! in a neighborhood of (z°, y*").

1V) Finally we prove (1.5) for the solution of (1.4). Since we have

X] = X{7' =V JJ(X]™, 5D,
(1.14) T Rt .
B =BV =V J; . (X], 5], =1, -,
we get
015) XI—X{e, | E— BTS20,
' BB KET, =1

and get (1.5)-ii)). Applying Vo, cor1=(V 40, V.o+1) to the both sides of (1.14), we have

V ao,e0i(X] = XD =V VT (XTI EDW o0 XI7
_‘_VfVéjj(ij_la EZ)onaeH-lE{,

(1.16) A R ,
V.to,éﬂ'l(gﬁ _d£+l): Vach‘]j-H(Xuja dsz+1)’7zﬂ,€v+1X»]
VT T (XD B 0,008
Then, we have (1.5)-1) and iii) by (1.15), (1.16) and (1.5)-ii). Q.E.D.

Proof of Theorem 1.4'. Operating 9%...D%, to the both sides of (1.16), we have
(1.6) by induction on |a+ j|. Q.E.D.

Theorem 1.5. Let ¢, € Pcy), j=1, - -, v+1, - - -, with 2,< 7, (Z1/8). Then,
D, =kt - - 49,,, is well defined by (1.3), belongs to P*(¢,z,.,) with a constant c,
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(=1) independent of v and z,.,, and satisfies

V0@, (2 €4 =(F ,4)(x", Fyx", 7)),
Vi@, (X0 €)= 4, X", £FY), £77).

From this theorem and Theorem 1.4" we get immediately

(1.17) {

Theorem 1.5,  In Theorem 1.5 we assume that {J,/z;}7-, is bounded in S}((2)).
Then, J, ., =®,,,—x-& is bounded in S}((2)) with respect to .

Proof of Theorem 1.5. Operating ¥, and V.., to the both sides of (1.3), we
have (1.17) by using the fact that {X7, 5/};_, is the solution of (1.4). Then, together
with Theorem 1.4, we can prove the theorem. Q.E.D.

Theorem 1.6. Let ¢, ¢ H(z)), j=1, -, v+1, .-, such that 7. =)7., ;<
i 'z, and let {X7, B1Y;_(x°, &) be the solution of the equation (1.4). Setting @,,,
=¢ - - - #4,.,, define (X, Eﬁi}}(x", &%) as the solution of the equation

(1.18) { X =00, &,
=V, (0T, £,
and set
1.19) (Ko 110, &) ={X7, BN, Z3(00, £4).
Then, we have
(1.20) (X0, BLLEOG &) =X BL1EGS £7).

Furthermore, we have

(1.21) {l) D, 4,.:=0,.,s

ii) (¢1#¢2)ﬁ¢3:¢1#(¢2#¢3):¢1#¢2#¢3-
Proof. Noting (1.17), we see that {X7,,, :m}”” is the solution of (1.4) for v

replaced by v+1, and we get (1.20). Then, we have (1.21)-i) by (1.3) and (1.20).
Similarly we can prove (1.21)-ii). Q.E.D.

Now consider a hyperbolic operator of the form
(1.22) Ly=D,+ At, x,D,) on [0, T,
where A(t, x, €) € #>([0, T1; S*) is a real valued function on [0, T X R**. For L, we
consider the eiconal equation
{az¢+ At x,V,9)=0  onl0,T],

1.23
( ) ¢‘t=s=~x'$-
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Then, we have

Proposition 1.7. Let ¢=¢(t,8)=¢(t, 5; x, &) (0<s<t<T) be the solution of
(1.23).  Then, there exists a constant ¢>0 such that

{ i) ot s) e P(c(t—s)),

(1.24) . . .
i) {J(2, 8)/(t—s)} is bounded in §’,

where J(t,8)=¢(t, s; x, &) —x-§.

Proof is easily done for a small 70, if we follow the similar procedure to that
in Section 3 of [8]. We fix such a T in what follows.

Proposition 1.8.  For the solution ¢(t, s) of (1.23) we have
(1.25) 0,68, 55 %, )= (s, V(2,55 x, §), §).

Proof. Let (¥(a), (o)) be the bicharacteristic curve of A(¢, X, D,) which passes
through the point (x,, £) when ¢ =s, where x,=V.é(t, s; x, £). Then, (9,4)(a, s; ¥(0), &)
is independent of . So we have

@:0)(t, 55 x, &) =@.P)1, 85 X5 §) ;=
:as¢(S9 s, Xos E)—at¢(t’ 83 Xos S) iz:s: _at¢(t9 85 Xo» S)ltcs
= A(s, X,, V ,6(s, 53 X, &) =1A(s, V$¢(ta 83 %, 8),8).

Hence we have (1.25). ‘ Q.E.D.

Now, take 2, (j=1,2, ---,u+1,---) as 2 of (1.22) and let ¢, s) be the
solution of (1.23) corresponding to 1,. We define @=0,,...,,,(4, 4, - -+, t,.1) by

@(tm tls tt tu+1):¢1(t09 t1)#¢z(tn tz)# tee ﬁ¢u+1(tv’ tu+1)3

and define {X7, ZI}_, (t,, t,, - - -, 1,45 X%, &%) as the solution of the equation

(1.26) {xj:Vf¢j(tj—1; t;; X771, 89,

§ =V Pyui(tys a5 X7, E170), J=1,- v
Then, we obtain the following

Theorem 1.9. O=00(t,,t,, - - -, t,,,) satisfies
1.°
1) atOQ = 21(’05 XO’ Vz0@)7
(1.27) i) 8,0=2(t, X!, 82,0, X, 8)  (j=1,---,v),
111) 0 @:2v+1(tv+1’ VEH'I@’ Syﬂ)'

ty+a
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2.° Ift,=t,,, for some j, we have

. 40 v+1

@1,2,---,v+1(t0’ sl it s has X L& )
— V40 gl
—@1,2 ,,,,, j,j+2,---,v+1(t0’ T ]: tj+2’ Y ty+1, X 95 )

(the index j+1 disappears).

(1.28)

3.9 If 2,(t, x, &) =2, ,.(¢, x, &) (therefore ¢,=¢,,,) for some j, we have

. 40 1
@1,2 ..... u+1(t0, ) tv+15 X >§v+ )
v g0
=012y jotgatyewatlloy * 0 Bips Bpny o By X0, 6711

(the index j disappears).

(1.29)

Proof. 1.° From the definition of @ and (1.26) we have

9, D=3 {0,8,(t, 11, Xi™Y BN 4T (¢, 1 1,3 X0, 5)-0, X7
ji=1

+Vf¢j(tj-—l9 tj;Xjﬁl’EZ)'atkEf_athj':’j ,, tku]}
+atk¢u+1(tv’ tu+1; X:e Ey+1)+71¢v+1(tu’ tv+17 :’ VH)'ath:
=0,,0:(ts-1> 1x; D G Ef)‘}‘ac;ﬂskﬂ(tm'tk“a Xk, BbT
(X0=x0, Gr+i=g+),
Then, we have 1° by (1.17), (1.23), (1.25) and (1.26).
2.° If t,=t;,,, we have ¢, ,(t;, t;,: XJ, B{*)=X7 - 5", X/ =X/ and 5]=
Fi+1, Therefore, we get (1.28) from the definition of @.
3.° As9,0=0byii) of 1° if 2,=2,,,, we have

@1,2 ,,,,, v+1(t07 SRR I FUPTIE N SN x°, &*n
_@1 2y00e, v+1(t0’ Tt ] 15 ty 15 t]+1’ R tu+1; xo’ ?H)-
Therefore, we get (1.29) by 2.° Q.E.D.

Corollary. For O, ,= ¢, ¢, we have

atu®1,2+at1@l,2: —22(1‘09 x°, VxOQI,Z)
(1-30) +{Zz(to’ x°, Vzo@m)—zl(tm x°, Vx0¢1,2)}
— {2, X1, ED— A1, X1 ’71)}

Furthermore, if the Poisson bracket:
(1.31) {e+2, t+ 2} =0,4,—8,2+V 2,-V.2,—V 4,V .2,=0,

then we have

(1 '32) ato@1,2 + azl@m = —22(2‘0, XO"VN@LZ);
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where t is the dual variable of t.

Proof. Let (¥(0), 7(0)) be the bicharacteristic curve of 2,(¢, X, D,) which passes
through the point (x°, V,$,(, #,; x°, 1)) when. ¢=1,. Then, we have (1.32), since
we have y(t,)= X7, 5(t,)=E&] and 2,(a, ¥(0), 7(0)) — 4,(a, ¥(a), 7(0)) is independent of ¢.

Q.E.D.

Theorem 1.10. Let 2;¢ ([0, T1; S*) (j=1, ---,v+1) and let ¢,t,s) be the

solutions of (1.23) corresponding to 2,. Set

®1,2(ts 0,5)= ¢1(t5 49)#9752(07 s),
1.33 o
( ) {@ma’ 0,5)= ¢2(t> 9)#¢1(0, 5),

and set for 1<k<y

@1,...,,,4.1(%; tt Ty tu+1)
=@t 1) - - - #Pe(ti_ s 1St Tes Db - - $0,,4(8 1,0,
@1 ..... y+1(t09 ] tu+1)

:¢1(to, tl)# e #¢lc+l(tk—la tk)#¢lc+l(tk9 7 +1)# e #¢u+1(tv9 tv+l)'
Then, we have
(1.35) D, t,6, )=, (t, t—0+s5, 5)

if the Poisson bracket {t+2, c+2,}=0. Furthermore, we have

1,---,»+1(to, SRS PR tk+19 R tv+1)

=@1,---,v+1(t0’ SR PN tk—l_tk+tk+13 Tivs "0 s tv+1)‘
if {e+ A, t+ 24,1} =0.
Proof. By 1° of Theorem 1.9 we have

(1.36)

acél,z(ta g,8)=— A(t, x°, Vzél,Z)s
and by (1.32) we have

at@LZ(t’ t'—0+sa S)
:(az@m)(l‘, t—0+s, S)+(ao@x,2)(ta t—0+s,5)
= —zz(t’ xO, 72@1,2(1" t_a—!—s? S))

Hence, @l,z(t, 0,s) and @, ,(t, t—6+s, s) satisfy the same differential equation.

the other hand

él,z(ﬁa g, S):¢1(ﬂ, 3)2@1,2(0: S, S).

On
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So we get (1.35).
Using (1.35) we can write

Diooruiiltor s Bty s b+ o5 1)
=¢i(t, 1§ - #(¢k+l(tk-1> tk)#sbk(tk’ 799) A $,(t,1,.0)
=Gillo, )F - - - §(Bellioss leor— Tt les)BPes i(lems— Lot Bipns Los )
CH (s L)

:@1,...,p+1(tm SN SN tk—l_‘tk'!‘tkn» t}c+15 R t»+1)-

Hence, we get (1.36). Q.E.D.

Finally, we note that, for ¢, ¢ 2,(z)) (z.=} 7., t;<7,) such that {J,/z,}5_, is
bounded in S’, we can find (7, x, &) € Z,(ct) for a constant ¢>0 and ,(t,x,&) e
[0, T1; §"), j=1,2, - - -, such that “3,¢,+1,(t, x, 7 .4,)=0 on [0, T], ¢]|t 0_x 5,
bi(z; x, E)=,;(x, £)” and { Jile Yoo {47, are bounded in S', where J, é;—

This fact can be shown by setting ¢z, x, &)=x-&+a(t/r,)J,(x, &) and using the
discussion in [1], where a(¢) is a C'-function in R such that a(t)=0 (0<¢<1/2), =1
@=0.

§2. Fourier integral operators of multi-phase

Definition 2.1 (c. f., [7]). Let a(y, y) be a C~-function in R*”= R? X R” satisfying
for any multi-index «,

|505a(7, IS Copsd™ 3 (=0 <m< o0, 07, 0=0< 1),
We define the oscillatory integral for a(y, y) by
03—” e~ v"7a(y, y)dydy
=lim f j e~ iry(en, e y)aly, y)dydy
- f f =1y D, Y () D, Y aly, y))dydy,

where dy=(2r)""dy, x(n, ») € & in R*" such that y(0,0)=1, and / and /" are mtegers
satisfying —2/(1 —9)4+m<—n and —2/'4++< —n.

Definition 2.2. For ¢(x,§)e #,(z) and p(x,&) e ST we define the Fourier
integral operator P,=p,X, D,) with symbol ¢(P,)= p(x,&) and phase function
#(x, §) by

2.1) Pu(x)= OS-IJ et @0 =u0 p(x, Eyu( y)dydé forue &.
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Theorem 2.3 (c.f, [2], [6]). Let ¢, e Z,(z)) (r,+7,=1/8), p; e ST (j=1,2) and
{x', él}(x", &%) be the solution of

22 {x1=V5¢l(x°, &),
51 = V.r¢2(x19 ‘Ez)'
Deﬁne ¢1,2(x: 5) by
23) B1,A(X, E) =3, E) = (X", ) — X1 &1 (X", &)
and set
2.4) 4", 8)=0, —“ ¢ py(x0, £ p (', E)dx'dg,
where
2.5) Y=, x5 € €7

= ¢1(x05 EN—x1-E g, E) — (X", £9).

Then, we have qe S™*™ and P,,P,,=Q, , Furthermore, q(x°,&") has an
asymptotic expansion ) 5., q,(x°, &) with the following properties:
D) q,(x &) has the form

q,(x*, &%

2.6 : .
(2.6) = I _H; iy Tj,a,p(xo, EZ)pia)(xo’ Sl)nge)(xl: &9,
a« =25
where
2.7 71,a08X" E=71,0,8(X’ §; b1, §p) € S, Fo7DIFIal-A=plat bl

and for any integer | there exists a constant C depending on j, | and |J, [P and |J,|{P
(for some ') such that

(28) |Tjaﬁ‘{v(29~l)i+|a|~(1—ﬂ)la+ﬁ|)£C‘
il) For any N there exists ry(x, &) e Sy++™2~ G ~V¥ sych that
N-~1
2.9 Py Py ZE] Qo= Ru 51,00
i=
and ry(x, &) satisfies the following: for any integer [ there exist an integer !’ depending

on |my),|my}, N, I and a constant C depending on |m,|,|m,|, N, [ and |J,| and |J |{ (for-
some ") such that

(2.10) Pl @D SOy | i,
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Proof. 1) We write

211 Gi(x’, ) —x"- &1+ 6u(x', E) = 9,,,(x", §) +

with + of (2.5). Then, it is easy to see that P, , P, ,,=Q,, , for q(x,&) defined by
(2.4). Since ¢, belongs to Z,(c,) and 0<7,<1/8, we have

(2.12) |Vl | =] 6" — &2 —$<E5.
Let (&) be a C=-function in R" such that
=1 (§£D, =0 (¢=d,
and set y. = —y((—&%)/{&%>). Then, by (2.12) we have
(2.13) Vo | =5 |6 —&§"=35<E")  onsupp y..

Setting 1=+ |V A =il ay-Ve) and Ty= —i |V |2V -V, we write
for a fixed /,>n and large /

4.4, 89=0,— [ [ e p (. )p.e, e)avde
—[[ ey @yt pee )pe epavae,
where T% (j=1, 2) are the transport operators of 7. Then, we see that

2.14) g.(x’ &e S™~.

IT) For y,=x((8*—&%/{&*)) we consider
@.15) gi(x", £)=0, -” e p(x%, £ py(c', Ed'd.

Then, by the change of variables: x'=x'+y, E‘:é‘—i—p, we can write

2.16) s, £) =0, — f j eV, p(xhs EE PPy, Edvdy,
where
@.17) Fo= 73 3% 8) = 1((& +7—EYI(E™)

and
P=9(p, 75 x°, )= — Y(x, &'+ p; &'+, &)
(2.18) =y p—($(x", &' 7)) — %' — (%, £ — ($o(x* +, &)
—y- &1 gy, ).
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Since (%1, &) is the solution of (2.2), we have
(2.19) X< <d, |§ SIS ED SKE.
By the definition of 7, we have
(2:20) [§—&+p|I<KE)  onsupp
Hence, from (2.19) and (2.20) we have
Q@21 [§ 4678018 +7—£+(1—0) &' —|<KED  onsupp %
Consequently, using (§+&> (&> £|&'| (§,& € R™), we have
2.22) KEH=(@+op=2(&) (0=6=1) onsupp7,

Now, using (2.2), we write
V= y—f: Vel Ji(x", & +0n)d 0 -7,
Pob=n— P.PIG 4y, €040 .
Then, by (2.22) we have

{IVv@I%|y|—4r1 17KED =]yl ==K 7l
Vb1zln] =22, | yKED zInl— K& 1yl on supp 7

Hence, we have
EPN AP+ = 3LE A |+ 7 )
=4 3D I+ =Z3KED [y +I9)  on supp .
Set for any fixed 6 (0<<6<C1)
XYoo= 1= 2 (&% | ¥+ P)(ELED*Y).
Then, by (2.23) and the definition of y we have

(2.23)

@24 (@ FFHPFPZ-5 > onsupp e

Hence, setting
T=iK& |V PP+ D KEYT -V + V1),

we write for large /
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o,-(x", §)

=0,— ” e L Fop X", 81 - 0) poX 4y, E)dydy

=” e~ (TNl X", € +7) pa(¥: +y, E))dydy.
Then, using (2.20)-(2.22), (2.24) and 2p>1, we see that
(2.25) Gy, X" E) e S for any fixed 0<(§<1.

IIT) Setting
(2.26) 1=, 15 §)= (L&D | Y +InPELE ),
we consider
45(x*, €9

(2.27) . . |
=” e dop X' 8+ )X+ v, §)dydy. !
We write by using (2.2)
(2.28) b=y-n—Ay-y—By-y,

where

A= AQy; X, &) = j (=0 7 (x°, &+ ).

(2.29) :
B=B(y; ¥, 52)=f (1 — O 7 J (&' + 6, £)d6.

0

We define symmetric matrices
F=F(y,n; x,§) and G=G(y,7;x",§)
by

F= A+ FBF,
(2.30) { +

G=B+GAG,
and define the change of variables: (y, 7)-—(z,7) by

—z+4Fy,
@2.31) {y 2T

p=Gz+7.

Then, noting that 4 and B are symmetric, we see that we can write
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(2.32) $=(+FG—24G—2FB)z-7,

where 7 is the unit matrix.
Now, we investigate the properties of F and G.
Set for a fixed (x°, &%)

2= { p=(p;(¥,n; x°, £); n X n matrices of elements p,, such that

(2.33) 1
; s X0, &)< =
| D3> 73 X% )| 5}

lp(w,7; x° &)=

I3

jrk=1

for (y, ) e 4 defined by
A=A )= { 01 P E +Ir=-0 <,
and consider the mapping 7: ¥—2 defined by

(2.34) ‘ Tp=ALEY +pBLEYY'p.

For small 0<d<1 we have

5 2\ -1 5 2\ -1 2 Lo
(2.35) HAHészE > §—§-2-<$ >7h o IBI=2n(E >§Z<~‘E >

Hence, we have
(2.36) I Tpl| <14 +pIIBED T lpI=E  (pe ),
and

| Tp—Tp' | <I(p—p")BLE | +11p"BLE (P —P) |

1 1 1
<t oy L i< 1 v , ’e 3.
=5 lp—p'|+ 5 lp—r'= T lp—p'|l (p,p'e2)

(2.37)

This means that the mapping T: 2—2 is into and contractive, so that we have a
unique fixed point p,=py(y, »; x°, &).

Let D, denote one of the differential operators 0,,d,, 0,0, 0. Then, we have
formally

Diipy=Di(ALED) +(Dip N BLED ™ po) +(poBLE) ) D5,
+ XN Dppy- DB D,

ki+katks=k
kistks kssk

Using this we have by induction
11990705022 |

(2'38) <C o\ - lata’ |+ (1-p)|ata’+p+p5 | A
= a,ﬁ’,a,ﬂ'<§> ((yﬂ?)E ).
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Then, setting F=p,(&*>~* and G=p,&*), we see that the equation (2.30) has the

unique solution (F, G) such that

(2.39) \1F|l§%<$2>“, !G\|§%<EZ> e d,

and
1) 050;050%F ||
= G

(2.40) A s
i) ||05950505G |

g C;'a,,ﬁ’ﬁ,<§2>1~[a+a’|+(1~p)]a+a’+ﬁ+ﬁ’! ((y, 77) € /1)

From (2.31) we have
y—Fp=z—FGz, p—Gy=y—GFy.

So we have

2=(I—FG) " (y— F)=(y—Fp)+ 3 (FG)(y—Fy),
(2.41) -
r=(—GF)" (7= Gy)=(g—Gy)+ 3 (GF)"(y—Gy).

From (2.39)-(2.41) we have

5 5 2\ —1
I17,z—1IS2+3C, anzug(ﬁwc)xsm

(2.42) . s
1Pl ( o HIC)EN I —TIS 2 +aC
and
|os3s0zie|
é C;:a’,ﬂ,ﬁ'<$2>~ |a+a'l+(1—p)(ln+a’+ﬁ+ﬁ'l—1),
.43 ooz |

§ Ca/:a’,ﬁ,ﬂ'<§2>1_ lat+a’|+(1=p)(Ja+a’ +8+81-1)

(a+a'+B+5 =1, (y, ) e A),

where constants C, C,,. , .. are independent of 0<5<(1.
Now, set

Z=2Z(y,n; X', )=(+FG—24G—2FB)z,
2.44) { 75 %%, §)=U+ )z

I'=I'(y,n; x°, &)=y (s e .

Then, we have (2.42) for Z and I" by replacing 5/24 by 5/12 and C by some constant
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C’, and have (2.43) for constants C., .. Hence, we have for a small fixed
0<o<1

1
(2.43) det (220N =L (e o,
) 6
and
(| 05050505 Z |
é C;/a/ s ﬁ'<$2>_ Iw+a’l+(1~p)(]a+a'+ﬂ+ﬁ'l—~l)’
(2.46) (|0f0=08a%l |

SC,: s ﬁ’<§2>1—|a+a’[+<1-p)(fl1+a’+19+/9/I_l)
(ata'+p+8(=L (3, p) e A).
Then, noting (y, 7) € 4 in supp 5, we have by (2.32)

(2.47) g, €)= ” e 2T pU(Z, s X0, E0dZdT,
where
P(Z, T X", &) _
. -1
(2.48) = {}Zoiépl(xoa Sl +77)p2()'c1 +y, 52) det <iz”’?‘)> }y=y<Z,F)
oy, ) 1=1(Z,I)

for the inverse (y, 9)=(y, 2)N(Z, ") of (Z,I")=(Z, ")(», n).
IV)  From the theory of the oscillatory integrals we have g,(x°, £%) € S™*™ and
have the asymptotic expansion

4 1 a Na 4
(2.49) qo(x", E~ 2] ”&TDZ +0:0,0; x°, £9).
Then, noting (y, 7)=(0, 0) for (Z, I")=(0, 0), we have
4o (x*, E)~ 2, 4,(x', &%)
~

for q,(x°, &) of the form (2.6). Hence, from (2.14) and (2.25) the proof is complete
Q.E.D.

Remark. For,=2Z-I" we have

ayjam‘/; = az/jZ' a?ﬁcl—' +9,Z- ayjp’
a'l/jaﬂk\p = aij : aﬂkF + awcz : a?ljr7
awam‘p =0,,Z- 0yl +0,,Z- aﬂjF

at (y,7)=(0,0). Hence, we have
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(G )~ am en)Gr 7))
—det (,’; yg o V”V”‘:”)zdet (’7 oo, &) r )
Fob VP I V€V£¢1(x?’ &)

(2.50)

at (y,7)=(0, 0).

Theorem 24. Let p,e S} and ¢;e P () (j=1,2,--.). Assume that
M. =35, m;|< oo, 7,= 15, t;<1,/(8¢c,) with a constant z, in Theorem 1.4 and a
constant c, of Theorem 1.5, and {J,[z,;}7., is a bounded set in S}((2)). Set ®,=¢, and
O,=g4- - -§4, 022).

Define

qjl ..... j,(xoa SH—I) € S,)WLV+1_(2'0_1)EP (mwrl:ml"l" st +7n»+15 ju:jl+ t +jp)9
inductively, by

(2.51) qh(xo, &)= > le,al,ﬂl(xoa &;0, ¢2)P£al)(xoa Hl)pZ(ﬂl)(Xl, &),

lal+ 1| <21
and

(2 52) qjl """ j”(xo’ Ev+1):luv+ﬂzvll<2 : rfvaa”,ﬂ”(xo’ §”+1; @w ¢V+l)

XY gymaX BN (X0 E7) (022),
where y;, g€ Sy G0 D= Q-0ie Bl gre symbols defined by (2.6) of Theorem 2.3

corresponding to @, and ¢,.,, and { X, Bi},.((x°, &*") is the solution of (1.4). Then,
for any N and [ there exist an integer l " and a constant C, , such that

i% !<my+1—(2p—1>iy)
1

(2.53)

<CNZ Z |p (]_véNa ”:152>"')-

Proof. 1) First we prove that the right hand sides of (2.51) and (2.52) can
be written as the sum of terms of the form:

LX) =750, (X0, By e, pal X, ED) - - -
XT;EY ll)nv—l ﬂ”_l(xu’ Eu)rjy w ﬁv(xo u+1)
(2.54) X it e (x, Hl)Pz(,slMl)(Xi, 7).

—~1 +1
Xpy<ﬁu 14 gv— 1)(X 5 = )pu+1(ﬂ”)( v E:
X & Hriey) '_'Ts(ﬁx)XY‘I(ll-’l) . XTz(Nt)

=~ k1,01 £550s lc’ u lct,o'b

(k5 65 {1, o osv=1} 1<y, <k, 175 =4), 1<0,=n, 1<0j=n),

where
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D laf+pr<2j, (k=1,---,),
I R N  ER [ e
+(0'+ -+ | =)+ (o' + - - - +0f|—1)
=la’+ - -+,
iii) |0¥|=1 k=1, ---,9), |0 |=1 (=1, - - -, 1),
) s+ 4] t=00 L |t - )

(2.55) !

Let y=1. Then, (2.54) has the form
(X, £)=7,,(x", EIPIT D (X%, ED Doy (X7, 8),

and |4'|=0 by (2.55)-i)). Hence, we see that the right hand side of (2.51) can be
written as the sum of terms of (2.54) for y=1.

Now, assume that the statement is true for ». Then, for v+41 the right hand
side of (2.52) can be written as the sum of terms

Ju+1(x0> {:vﬂ)ETj,,H,avﬂ,ﬁvﬂ(xO, $v+l)l(av+1)(x0, Ev+1)pv+2(ﬁu+1)(fu+19 &,

where {X,,,, 5,,}(x’, &*?) is defined by

{Yu+1: ‘75@,,“()(30, Ev+l)’

(2.56) N N
Sy = Vz¢v+2(Xu+u EMZ)'

Then, by Theorem 1.6 we have

{{fyw B}, &) ={XH, Bui)(x, £+,
(X7, B 5, &N ={X{, 1, B, 1o, £79).
By (2.54) we write

Jp+1(-x0: $v+2)
=T jyanarn, (X0 § 0N (X, B - -
XDt ot (X% BN 1w X0 £ PO (X0, BY) - -
X P14 (XS EDPur1 (X, EFNELID - -

Frs(0%) Yri(ol) ri(el) -
X &7s X}’a,l X }|5u+1=5v+1(x0,5v+2)

£$:95 £ £5,0%

Xp,+2(ﬁu+1)()?u+15 §y+2)'

(2.57)

(2.58)

Since, for example, we have
13 k-1 Tk
V5u+1p](c”(§>k»1+5k—1)(X, » d,,
_ 13 k-1 K Fk-1
—(Vgpz(clzﬂ)k—lwk—l))(Xu y T i T8

. k-1 o -1
+(Vzp1(c’zﬂ)lc~1+ak—1))(X» s W e XY,
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using (2.57) we see that J,,,(x" £**%) can be written as the sum of terms (2.54) with
the relation (2.55) for v+1. Hence, we see that the same statement holds for

qjl"";jv+1(x0’ $u+2)'
II) By Theorem 1.4’ and Theorem 2.3 we have
Vewin X", &) € S, VeriZiH(x", &%) e Sy,
(259) Tﬁf?xk,ﬁk(xoa E’f(x°, §v+1)) e Sp—(zp—l)jzﬁ|ak1_(1—p)|.1k+ﬁk;_,,¢k,
Pk (UG8, £7), B, £71) € Syprmelet s oo iptorson,

and these symbols are bounded in the corresponding spaces with respect to v, k<y
and j,< N for any fixed N. Hence, together with the relation (2.55) we see that

(2.60) L(x, &%1) @ Smv+i=@e-Di
and for any integer N and / we have for an integer /” and a constant C,,, independent
of v

. v+1 _
(2.61) [Lfmer= @ < Cy IT |plem? (LEN).
i=1

III) We fix an integer N >0 and consider the number of the terms I(x°, &*%)
of (2.54) for g,, ... . (x" &*") when j,<N. We note that in (2.54)

.....

“the number of {y,, ., g Py, T%, XF}”
(2.62) <v++D+s+1Z 20+ + - - - a4
<2042, 4+ 1200+ N)+ 1.

In (2.51), using |a' + §'|< 2, we see that

“the number of terms I,(x’, &%) of (2.54) for ¢q,,(x°, £%)”
<O+ DX (- 1P = (a4 1)
Then, in (2.52) for v=2, using |’ + £*|<2j, and (2.62) we have
“the number of terms I,(x’, &%) of (2.55) for ¢, ,,(x°, &)”

S+ DX (n 412 X 2+ N)+ 1)
<43+ 1)+ N+ 1)

Finally, in (2.52) for the general v we have

“the number of terms Z,(x°, &*") of (2.55) for q;, ... ; (x° &*")”
(2.63) =4Mn+ 1)+ N+ 1)
§4N(n+1)4N(D+N+ <M, C; (©v=1,2,--.) for j,éN
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for constants M, and C,. Consequently, from (2.61) and (2.63) we get (2.53).
Q.E.D.

Now, let (&) be a C~-function such that (£)=0 (|¢|<1), =1 (|€|=2), and
set

.69 Gy, E)=9(E) 2 sy 8) (0<eg]).

Jiteee+fo=7

Then, by Theorem 2.4 we have for constants C; , , independent of v and ¢

|qy(f}'),s<ﬁ)(x5 3]
(2.65) LChap  MaX gy, .00 709

R R < Jvilat+ Bl
Jiteety=g
X<E>Wiu+1—(2p—1)j—|01|+(1—P){41+ﬁ[_
Take 0<¢,<1 (¢;—0) such that C, , ,4%;<277 for |a+p|<j and for a large fixed
A%>0 determined later, and define §,(x, §) by
(266) qv(x5 E): 'ZO qu,j,ej(x5 $)
J=

Then, we have

Theorem 2.5. Let p;e S™ and ¢,¢ P(z) (j=1,2,---,v+1,--.). Assume
that

M=% m|<c, z.=3 5,=/(8C)
j=1 J=1

with a constant t, of Theorem 1.4 and C, of Theorem 1.5, and {J,[z;}7-, is a bounded
set in Sy((2)).
Moreover, assume that for any | there exists a constant A, such that

(2.67) |p;li"?=4,  (=1L2 v+l )
Then we have for a constant C, independent of v
(2.68) |g,|{m+0 < Cy v=12,-..),

where §(x, &) are defined by (2.66) for A determined by the finite number of {A,} of
(2.67). Furthermore, set

(2.69) R,=P, , Py Py —0

v, Pyp1®

Then, R,: H_.—H__ (H_.=|), H,) is a smoothing operator in the sense: For any
‘g and N we have for a constant C,  independent of v

(2'70) HRVHH(;'—’Hgﬂ—Néc:,N’
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where || - ||g,-x, .y denotes the operator norm of the mapping: H,—H, .

Proof. First we note that, if ¢ e 2,(c) and pe S™ (1/2<p=1), we have for
any ¢

@71 [Paul, <Clpi™ Nullosm — We Hoypn),

where C and / are constants depending on ¢, m and [|J]j, for some /’. This fact is
proved by the same method with the proof of Theorem 2.5 in [8].

For a fixed N set §, y(x,&)=2.7-» 4.,;,.,(X, §). . Then, using (2.53) of Theorem
2.4 and (2.67), we have by (2.65)

2.72) |G, x [T @IS Gy,

for a constant Cy ; independent of v, if we choose 49 sufficiently large according to
{4;} of (2.67).

For a given N, we take an integer N such that m, ,—(2p—1DN<—N,, and
write R, in the form

N-1
R,= (P1,¢1P2,¢2_ _ZO O mz>P3.¢s' : 'Pu+1,¢y+1
Ji=

»—2
+k { Z <Qj1,---,j1c; @k+1Pk+2,¢k+2

=1 Ujp<sV
N—Fp—-1

_j Z_O Qh,-u,jku; ¢k+z>Pk+3,¢k+s‘ : 'P»+1,¢u+1}
(2.73)

+, Z (th'--,jv—l; ¢»PF+1,¢u+1

Fo—1<N
N=jy—1-1 ~

- Z le:"'sjv; ¢u+1)+(72 le ,,,,, Jvi ¢u+1_—Q”7wv+l>
Ju<N

Ju=0

v—2 ~ -
ERV'O-{_kZ::l Rv,k+Rv,v—1+Ru,v (.]k:jl_{_' ‘ .+jlc)‘
We first note that for any fixed ¢ the operator-norms for

P, H

7~ Mmp+1

(ﬁk:mk'l_ e +mu+ls ﬁwz:o; k:V+1a v 92)

—H, =

are bounded with respect to k=v41,..-,2, since M, = 2i5ay myl<loo and
{|p;|™?};-, is bounded for any /. Hence, we have for a constant C,

I

b

HRV,O ”H.:-»Ilnuvoé Cly

(2.74) [ Ro i llergm 22, 4,

N—-1 {

|

P1,¢1P2y¢2— .ZO sz; (2%
ji= i

Ho g~ He+ Ny
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ch-k—l
(2.74) =67 L

N—-jp—1

I
|
\ Qi o1 Prvzyges

Jayees dkt+1; P2

Je+1=0 o—mpy3Ho+Ng

(kzly v '5’)—1’ ﬁu+2:0)'

Hence, if we prove for a constant C ,

! N-1 \
: !
) 1Py Poy— 21 Oy 02| _ <Cy.o
I j1=0 HHe—Ry~Ho+ ¥,
. N-je-1
ll) ‘ ley--',jk; ¢Pk+1Pk+2,¢k+2— . Z Qhw“:jk-}—l; g +2 _
(2.75) Jr+1=0 HH g -y, g Ho+ Ny

=Cy, (v=2,3, -, k=1,---,p—1),
|

| ~
III) [ TZ lev"'ij; ‘Pu+1_QV: Qu+1§
\ His<NV

H

éCX’,a (V:132a °t ')7
Hu"Ho'+N0
then, we get (2.70).
Using Theorem 2.3, (2.53) of Theorem 2.4 and (2.71), and noting ,,, — (20— 1)N
< —N,, we get (2.75)-1), ii)). Now, we write

Z ley"'vjui ’17v+1_Q”; Pu+1

Ju<&

= {7§N Q.fl;"':jv; ¢v+l——(QV?¢u+1~_QP;NZ@V+1)} + Qv,N;‘PnH
Jv

~ =,
Rv,N,le+1+RV,Ny¢»+1'

Then, since
o(Q}ml)—o(QF,N;@m):]__;N V(Ee38)5,,en, 1,05, 8,
we have
oRos )= T (A=, 5 ).

Then, we see that for a constant M, independent of v

0B, v0,.)=0  (§I=M3).

Hence, there exists a constant Cj ; such that

16(R, 0, ) [{r1= =00 L Cpr .

So, by (2.71) we have for a constant Cy,

(2.76) | R, 0,1 Ha«(m,,ﬂ—(zp—l)zv) <Cy (K

3G
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On the other hand by (2.72) we have (2.76) for R, . ,,... Hence, noting #i,,, —
2o—1NL —N,, we get (2.75)-iii). Thus, from (2.74) and (2.75) we get (2.70).

Q.E.D.
§3. Fundamental solution of a hyperbolic system

Consider a hyperbolic system

(3.1 L=D,+2()+B(t) onl0,T](T>0),
where
Alt, X, D,) 0
(3.2) 9(t)= T )
0 (X, D,)

(A,(t, x, &) e #>([0, T; SY), real valued),
and
(3.3) B(1)=(b;(t, X, D,) 1*3:::0)
(b1, x,8) € ([0, T]; S°)).
We also assume that for a constant M >0 we have
(3.4) (1, x,09)=04,(t,%,8)  (E[=M, 5=1).

Let ¢,(¢, s)=¢,(¢, 5; x, &) be the solutions of the eiconal equations

(3.5) {8t¢j+lj(t, x,V,$)=0on [0, T],
¢f |t:5‘ =X- Sa
and set
. I¢1(t’ S) 0
(3.6) 1, s):( » )
0 Im(t, S)

where I, (¢, s) are Fourier integral operators with phase functions ¢,(z, s; x, §) and
symbol 1. Then, we have by [8]

3.7 LI,(t,5)=R(t,5),

where R(1,5)= Y\, R; ,;(t,s) is a matrix of Fourier integral operators with phase
functions ¢,(¢, s) and symbols r(t,s;x-&) of class #~(4; S°) (4={0<s<t<T}).
Hence, the fundamental solution E(¢, s) for L, as the continuous operator from the
Sobolev space H, into itself for any fixed real g, is constructed in the form:
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(3.8) E(t,5)=1,(t,5)+ f 1,(1,0) 33 W0, 5)do.

Here, {W (t, s)};., are defined by
Wit, s)=—IiRy(t,s),
(3.9) :
W.osts )= Wit 0OW.0,5)d0
(v=1,2, - - -, cf., [8] and [9]).

We note that W,,.(¢, s) can be written in the form

(3.10) W, ., s)=ﬁ j . fﬁ WerD(t, 1, - - -, 1, s)dtdt, - -dt,
(WerD=W (@, t )W (t, t,)- - - Wi(t,,5), t,=1),
and that W®*P(t, ¢, - - -, t,, s) has the form
Wern(g, ty, -+, 1,5)

l
= Z (_i)u“le,qﬁjl(t’ tl)' : 'Rj»+1,¢jy+1(tw S)-

J1srerafpta=1

(3.11)

By Proposition 1.7 and Theorem 1.5 we have

¢jk(tk—l7 tk) € yl(co(tk—l_tk)) (to:t; tv+1:S),
(3.12) Djooveiyiittyy -+ 1,,8)

:¢j1(t’ tl)# tee #¢ju+1(tv’ s)e P(c(t—5)) (A T)

for a small constant 7">>0 and constants ¢, >0, ¢, >0 (see also Theorem 1.5"). Then,
by Theorem 2.5 we can find the Fourier integral operators

Wfl;j%"'yju+1yq7jlsj23"‘sju+1(t’\tl’ syt S)
with phase functions
@J1>J'2,~",ju+1(t’ PR S):¢j1(t’ tl)#¢jz(tl9 12)# e #¢J’u+1(tv’ S)

and symbols W, ;. ... (¢, ---,t,s) of class #=(4,; S°) (4,={0<s<t,< - -
<t<TY}), such that for any k and / we have semi-norm estimates

i

(3.13) HaﬁWh,---,nH(t’ Ly, -5 L, S)Héo)éclﬁ,z
(t:(ta Ly ooy ty)’ k:(koa kl» Tty kv)’ ”21,2: ©c )

for a constant C;, , independent of y, and for any £, real ¢ and integer N >0 we have
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“af{Rh,m(ta tl)Rjz,¢2(t1> t2)' : "Rju+1y¢ju+1(tv, S)
(314) - an---:fv+1:¢7j1"":i»+1(t’ Iy ooy Z, S)}HHaHH.;HV
gckp,a,N

for a constant C, , v independent of v. Set

Wv+1,¢y+1(t’ tlv ) tv’ S)

(3.15) z .
— Z (-—l)” Wj1,~-,jv+1; q)jl,.--,jv+1(t5 tu Pty tu? S)

Jisremsua=1

and

W_.(t,s)
(3.16) th I, 0)[»}2:1 r Jt

bty —1
J {W(”“’—WML%H}(ﬂ,tI,~--,tu,s)dt1---dty]d6 (t,=0).

s

Then, we have

Theorem 3.1. The fundamental solution E(t,s) for L can be represented in the
form

E9)=1,0.9+[ 16.0{w.9

had [ 1 y—1
G179 S I R B AP O R TR A

+W_(t,5) (=0, W_.(t,5)e B~(4;S ), A={0<s<t<T)),
where W__(t, s) is defined by (3.16).

For the proof we have only to prove that the operator W__(t,s) of (3.16) be-
longs to #=(4; S~=). For that purpose we prepare the following

Proposition 3.2. Let P=p(X, D,) be of class Si; (6 may be bigger than 1), and
assume that P is a smoothing operator: H_.,—H_, in the sense: For any ¢=0 and
¢’ =0 there exists a constant C, ,. such that

(3.18) [Pull,<C,,o ull-,,  (we ).
Then, P=p(X, D,) belongs to S~ and for any m’ <m and | we have

(3.19) P

(m*
ZM)écm’,L

P

for a constant C,,. , depending on C, ,..
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Proof of Proposition 3.2. Choosing ¢>n/2, ¢’=1,2, --- and using Sobolev’s
lemma, we have

|Pu(x)I§Ck Hu“—k (uey)a k:1927"'-

Hence, we have

(3.20) [ente. Di@ds =C{[ @ la@rds}

for the Fourier transform #i(§) of u € &.
Now, for fixed (x°, £%) (&°|=1) and I >0 set 2={¢; |§—£&°|<(&") "'} and choose
4,(8) e Cy in {&;]6—&°|<2¢&") '} such that

ﬁj@)axg(@%e-m in L(RY) (j—>o0),
where y,4(&) is the characteristic function of the set 2. Then, by (3.20) we have

1/2
(3.21) [ I onae=c{f, @ de) " scuen
2 2
On the other hand since p(x, &) € S{%, we have

| p(x", &)< p(x°, &) |H- C g™ for £ e 0.

So, using (3.21) we have
|p(x0, EO)I <$0>—7Ll§C,g/{<$0>—(1+n)l+m+<$0>—k~nl/2}‘

Hence, we have
ip(‘xo7 Eﬂ)léCé’{<$0>—l+m+<$0>—k+nl/2},

and setting k=(1+n/2)! we have
(3.22) | p(x", ENS2C )+t for any [ (k=(1+n/2)]).

For p’ =3, p and p ;,=D, p we use the interpolation inequalities:

P0G, max [pe Ol max |p(e, O+ max max |pe, )],

1¢~¢01<1 l§-§01<1 16-60|=1 [a]=2

and

(" ENF=Co max | pl, S")I{I max [ p(x, &)+ max max|p(x, ) I}

for a constant C,. Then, using (3.22) and noting p(x, £) e Sg% we have
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[P0, E) |+ P (X% ENSCEN, j=1 - n.
Repeating this we get (3.19). Q.E.D.
Proof of Theorem 3.1. Set
B.9)=109)+ [ 10.0{w0.5

(3.23) o o ney -
+ZJ f J Woii0,000, 1, - -5 1, 8)dty - -dty}-
v=1J8s Js 8

Then, from (3.8)~(3.15) and LE(t, s)=0 we see that LE(t, s) is a smoothing operator
which satisfies (3.18) for constants C, ,. independent of 0<s<X <r<{T. On the other
hand we write

¢j(t’ S):xg_}_‘]](t’ S; x: S))
@jl yyyy jp+1(t: tl’ M) tua S)
:x'$+Jj1 ----- jw_l(t; t]; o ',l‘u,S;x,E).

Then, noting e*/+* and exp {iJ;,,...,;,..(t: t;, - - -, £,,8)} are bounded in S7,, we see
that L E(t, s) belongs to Si; and {o(LE(Z, $))(x, &)}p<s<,<r is bounded in S;,. Hence,
by Proposition 3.2 we get

(3.24) R(t,)=LE(t,s) e #~(4;5) U={0<s<t<TY).
Then, setting

Wy(t, )= —iR(, ),

W, s):ﬁ Wi, OW.6,5)d0  (v=1,2, --)

and using the uniqueness of the fundamental solution E(t,s), we can represent
E(t, s) in the form

(3.25) EQ)=F@ )+ B 0) % W6, 5)d6.

Finally, using the fundamental theorem on the theory of the pseudo-differential
operators of multiple symbol in [7], we see that =, W1, s) € #=(4; S =), and
consequently we see that

2 X~
W_.(t,s)=] E(t,0) >, W[0,5)d0 ¢ Z(4; S~~).
s v=1
Q.E.D.

Using Theorem 3.1 we get a generalization of the results obtained by Ludwig-
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Granoff [11] and Hata [4] (see also [3])

Theorem 3.3. Assume that the Poisson brackets

{e+2; t+ 2}

(3.26) .
=0, — 0 A+ V2, Vdy—F oy Vo2;=0  (j k=1, -+, D).

Then, we can represent E(t, s) in the form

14 ~
E(t,5)= Zl W, 4t 8)
=
(3.27) . o
+ Z I t I le,--'sjk+1? Pjyyeee J'Ic+1(t’ Ly oo s by S)dtl". .dtk
1 j1<eer<Jr+150d s s [ ‘
(to:t)-
Here, Wi, ... i 0i,ills tis -+ <5 L1, 8) are matrices of Fourier integral operators
with phase functions @, ... (6,1, -+, t,_1,5) and symbols of class B~(d,_.; S™>)
@;,=¢,,, 4y=4, t,=t).
Proof. Let W=W,, . j.05,.0,, Gt -+ t,5) be a Fourier integral
operator with phase function

@j1,-",fv+1(t: Iy ok S)=¢j1(ta tl)# T #¢J’u+1(tw S)
and symbol
W‘l,-«-,j,,+1(ta t15 tT Y tw S) € ’@m(dy; SO)

J

(4,={0<s<1,< - <1<t =T},

and let W=W,, ... ;,.0ié,....,..( 1 - - +» 1,,8) be a Fourier integral operator with
phase function

@jlv"'yjy+1(t’ P tu’ S)

_@jly"':jlc-)—lyjk:"'ajv(t’ STAEIEPY PRRTS  PAE TR S)
and symbol
ley"'yjy+1(t’ tl’ ) t,n S)

= le:"':jv+1(t’ PPEETR SNTY PURE e ol PEPPS PP S).

If we set

L +2 ty—1
I(t, ty - oy tyyo s):I .. J Wdt, .- - -dt,,
8 8

the—1 tx te+1
sz {J (J Idtm)dzm}dtk

we have
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th—1 be—1 th+1

:I {f (j 1dtk+2>dtk}dtk+1
$ tk+1 s
tk—1 L+ 1 ti—1

- f { j (j Idt,c)dt,m}dt“l
8 8 th+1

th—1 K+ 2 by —1 th—1
J Idt,c_—-j . j ( Wdtk>dtk+2- di,
te+1 s $ [7 %

Then, by (1.36) of Theorem 1.10 we have

and

“ war, =" W,

te+1 Er+1

Hence, we have

¢ yv—1 by—1 .
j jt Wdti"'dtu:jt Wdtl--'dt,,.

s

Consequently, using ¢j(tk—15 tk):n:qu(tk: tk+1):¢j(tk-l7 t/c+1) =1 -- -, 1), we get
the expression (3.27). ‘ Q.E.D.

Now, we define the trajectry {Q,, ... 0o Piovcesyit (Gt - 58,3 3,8) (v=0,1, - - )
for fixed 2,, ---,4,,, 0=s<t,,,<t,<---<t,=t and (p,7)e R*" as follows:

[t v41=

First define {Q,,, ., P,,,,}(t; ¥, 7) as the solution of

dq _ dp _
(328) 7~V§21»+1(t’ Q9p)> 'E— _—Vﬂﬂziv-kl(r’ q’ p)’
(4> P)i=o =3 7).
Next, for 1 <k<y we define {Q,, ....;,.0o Piorrivas} (& Lis - - » 2,5 ¥, 77) as the solution
of

dg dg
4*27 /2 ta > s 4:_7 2 t: s bl
a9y Jar = it 4P) 7 wAiilts 4> 1)
(q’p)’t:tk:{ij+1,~-~,j,,+19 Pj;c+1,---,j,,+1}(tk9 ] fu§y» 77) (kzls vt ',U)-
For 2, - -4, (¥ 7) and a fixed 0<e<(1 we define an e-station-chain

{t,, - -, t) as the points t=¢,>#>>- - - >1,>>0 such that

|25t X°, 89— 250, (8> X, E9)|ZCEF)

(3.30) . ok
at (x ) E ):{ij+1,-~-ij+1’ ij+1,~--,]‘»+x}(tk’ Tt tv; Vs 7]) (k: 1’ T XJ),

and define the e-station-set A, ,..;,(»,7) by the set of all e-station-chains
{t, ---,t). When e=0, we often use the words ‘station-chain’ and ‘station-set’
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simply, and denote A, ;. ... ¥, 7)) by 4j, ... (¥, 7).
Furthermore, set

ALE; v, 1)
(331) :{{Q11,~--Ju+1’ ‘le :::: J'y+1}(t’ t, 05 ), 77)’ {tl’ T tv}
€ Ae,,ﬁ ,,,,, j,,+1(y’ 77)a jla v '9ju+1 € {19 Y l}: VIO: 1> s }

Then we have

Theorem 3.4. The solution of the Cauchy problem

LU=0 on [0, T,
(3.32) {

Ulimo="0,
Jor Uy="(uyy, - - - uy) € H_, (=\J, H,) is given by
U(t, x)="(u(t, x), - - -, u,(t, x))=E(,0U, e (0, T]; H_..).
Furthermore, if we set

Iy ={04(t; y,7); (v, n) € WE(Uy), 6>0, [n|= M}
(WF(U)={(y,7); dis {(»,9]™ n), WF(U))}=e})

for large M,(>0) depending on M of (3.4), then, I',=(\ocecs L', is closed and we
have for the wave front set WF(U(t))

(3.33)

(3.34) WFU@)CT,.
If A, - - -, A, satisfies the condition (3.26) of Theorem 3.3, we can replace (3.34) by
(3.34) WEUW)C T ={4(t; y,); (5, ) € WEUp)},
where A'(t; y,n) is defined by
A5 y,7)

(331)/ :{{le,...,jﬂ,la le,---,j,,Jrl}(ta tla ) tv;y’ 7]):
{tlr ) tu} € Ajl,u-,j,,+1(y9 U)a 1§]1< cte <j»+1§l}'

Proof. It is easy to see that E(f,0)U, is the solution of (3.32). For any
-+, 4;,,, and (»,7) we consider

X ZE . 7)
:{lec+1:"'aju+1’ ij+1:"':jv+1}(t’ Lis oo L3 Y, 77) (k:()a la v -,y),

Then, using (3.28) and (3.29), we see that for any >0 there exists ¢’ >0 such that

2

Gt
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(@2, <y~ — (@5, > 7)<
2| (X, < 718 ¥, ) — (X, D TEE Y, )<,
Now, we prove that [", is closed. Let (x°, &%) e I, for a fixed #,>>0. Then, we can
choose (x™,&™)ye [',,, m=1,2, --. such that (x™, £™)—(x’, &%) as m—o. By the
definition we can choose for ¢, =2"™

(3.35)

CORERN E B L)

for some A;p, - - -, A, _ and (y™, ™) € WF, (U,)

Yot

such that
(336) (xm’ gm):{Qj;"',---,j;”m+1> Pj;’”,---,jrmﬂ}(to’ tlm, ot '7t3fn;yma 77”) (mzlaza v )

Using (3.35), we see that there exists a subsequence {r=m,}z_, such that (y7,7)
converges to some (y~,7~)e WF(U,) and the corresponding trajectries converge
uniformly to some continuous curve. Now consider the trajectries defined by

(xo’ EO)Z{Qj§,~~~,j;';T+17 Pj;,~~-,jzr+1}(toa tlra Tt tyrrv J77, 777)

Then, again using (3.35), we see that (j7,7)—(y~, 9~) ¢ WF(U,) as y—co, and
{t, -~ i} e Ay g1, (37, 77) for some {¢]} such that &/ —0 as y— oo, which means
that (x°, &) e I",,. Hence, I',, is closed. From this proof it is clear that I",=1",,
if we consider 1</, <+ - < j, ., <1

II) Take a fixed point (x°, &%) ¢ [, for a fixed #,>0. For a fixed (3°,7")
choose a(x), a(x), b(£), b,(y) which have small supports in (conic-) neighborhoods of
x°, 3%, &°, 7°, respectively.

Consider a(X)b(D,)E(t,, 0)b,(D,)a,(X) for the fundamental solution E(z, s) of L.
Let Wy(ty, t,, - - -, t,,0) be a Fourier integral operator appearing in the expression of
E(t,s) in the form (3.17). Then, from the product formulas for pseudo-differential
operators and Fourier integral operators in [8] (or from Theorem 2.3 of the present

paper), we have for W, =a(X)b(D,) W b,(D )a,(X)

U( Wla?)(toa tla T, tus O, X, 77)

G e 3 Cornpanalon DACOB DG D G, DB (et P D0, 7).

Hence, we see that

supp a(x)b(¥ ,9(x, 7)) N supp a,(V.D(x, n)b,(n)= ¢

(3.38)
SWieS™  at(lyt, - ,t,0).

So we see that if we define ()°, 7°) by
(3.39) VW=V.0(x" 7", E=r 0" ),
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we may only consider W for such (3°,7°) in order to investigate WF(U(t,)).
III) Now, for O=¢, (%, t)4- - - #4,,,.(,, 0) we write

(3.40) 'Wﬂ«@:jdﬁwm@mﬂmwdn

We note that the relation (3.39) is decomposed into

ZAn N
(3.41) (2, &) (X8, B2 B, 2925 00,0,

where {X/, 57};_, is defined by

X]=V.p,t; 1, 1;; X7, B,

Ef: z¢]+1(tja JH15 ]’Eﬁﬂ j:1
X=x°, &=V, 0(x", )=V ,p,(t,, t;; X*, 5
V=0 ,770):75¢,+1 57, E:+1:77 5 tu—{»l:O)‘

(3.42) {

Then, if we assume (x°, & ¢ I',, ., for some ¢,>0, we have for any {¢7, - - -, ¢,

to,e0
0% 1°) e WE, (U)=>3(X}, EF such that
(343 XY S, 18, X, B (08, XE D)
=|~2‘f_@’ by Theorem 1.9-ii)) at {1, - - -, 19).
k !

Then, choosing a C=-function 7(¢,) on [0, T] such that y(z))2c0 and (3.43)
holds for ¢,/2 on supp y, we write

[ raeeowiyan——i [ e (40N owipan,

wrr Aty dr,
do PN T ) {( do )"1 , }
= il 1% w0, T W) idt,.
[ iel ( dt, ) ol ¢)]tk+1+lj o dn \ds, ro(Ws) di,

th—1
Hence, we see thatf r(t.)W,dt, can be written as the Fourier integral operator

41

of order —1. For any W,,, ,,,, in the expression of (3.17) for E(t,s), we consider
one element

Wis0,=1(t) - - 1@)a)ND)IW, 11,0,,,0:(D2)ay(X).

Then, repeating the integration by parts, and noting that {J,,,=®,, ,—x-&} and

{o(W/. 1 4,,)/C*} (for a constant C independent of v) are bounded in S* and S° with

respect to v, respectively, we see that (x°, &°) ¢ WF(U(t,)). Hence, we get (3.34).
Q.E.D.
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Finally we consider a system of differential operators of the form
(3.44) F=D,+Y At D, +B(tx)  on [0, TIXR:,
j=1

where A,(t,x), j=1, - - -,n, and B(t, x) are / X/ matrices of #~-functions on [0, T
X Rz Assume that the matrix A(¢, x,&=>7., 4,(¢t,x)&; has real eigenvalues
At x,8), - -+, A(t, x, &) of class #~([0, T']; SY) outside of £§=0. Assume, further-
more, that there exist eigenvectors N (¢, x, &) corresponding to 1,(t, x, &), respectively,
such that for N(z, x, &)=(N,(¢, x, &), - - -, Ni(¢, x, §)

(3.45) N, x, 8, N@x,& e #(0,7];S° (outside &=0).

Then, modifying 2, and N, in a neighborhood of £=0, we can use N(¢, x, &) as the
diagonalizer of . Hence, letting Q(¢, X, D,) be the parametrix of N(t, X, D), we
see that L=0Q(¢, X, D,).#N(t, X, D,) has the form (3.1), and we have

Theorem 3.5. Under the above assumptions the operator & of (3.44) has the
fundamental solution E(t, s) of the form

(3.46) E(t,9)=N(t, X, D,)E(t, 5)Q(t, X, D)+ W_.(t,5),
where E(t,s) is the fundamental solution for L and W__ is a smoothing operator of
class #(4, S™=) (A={0<sZt LT,

Furthermore, the initial value problem

FZU=0 on [0, T7,
(3.47) {

U!t=0: Uo

can be solved by U(t)=E(t,0)U,, and for the solution U(t) we get the statement
(3.34). '
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