On two conjectures by Hájek

By

Alberto Bressan

(Università di Padova, Italia)

§ 1. Introduction

In this paper we are concerned with the control system in the Euclidean n-space \mathbb{R}^n , represented by

$$\dot{x} - Ax = u \qquad u(t) \in U$$

under the following assumptions.

The dimension n of state space is at least 1, the coefficient matrix A is a real n-square, the constraint set U is compact and convex and contains the origin; the control system is proper, in the sense that R(t) is a neighborhood of 0 for each t>0; we suppose to start with the system in the origin at time t=0, and call R(t) the reachable set at time $t \ge 0$:

(1)
$$R(t) = \left\{ \int_0^t e^{sA} \cdot u(s) ds : \text{ measurable } u : [0, t] \to U \right\}$$
$$= \int_0^t e^{sA} \cdot U ds \text{ (in the sense of Aumann)}.$$

For any $x \in R = \bigcup_{t \ge 0} R(t)$, the minimal time function T is defined by:

$$(2) T(x) = \inf\{t: x \in R(t)\}.$$

Referring to Hájek's paper [2] we give here a proof for his two conjectures:

Conjecture 1. If U is a neighborhood of the origin, then T has directional derivatives at each point $x \in R$.

Conjecture 2. If in addition the boundary of U is a differentiable (n-1)-manifold (i.e. for each point of the boundary there is a unique support hyperplane), then T is C^1 in $R-\{0\}$.

§ 2. Some preliminary notions and lemmas

The proofs given here are based upon the well-known representation of compact convex sets by means of their support function. Dealing with the family $\mathcal{P}_c(\mathbf{R}^n)$ of

compact subsets of \mathbb{R}^n , we always use the Hausdorff metric. We set:

$$\psi(\Omega, y) = \sup_{x \in \Omega} y^* x$$

for any compact convex $\Omega \subseteq \mathbb{R}^n$ and $y \in \mathbb{R}^n$. ψ is continuous with respect to both arguments.

For the control system (U) we have:

$$(4) R(t) = \{x \in \mathbf{R}^n : y^*x \leqslant \psi(R(t), y), \forall y \in \mathbf{R}^n\},$$

and

(5)
$$\psi(R(t), y) = \int_0^t \psi(U, e^{sA^*} \cdot y) ds = \int_0^t \psi(e^{sA} \cdot U, y) ds.$$

For any $x_0 \in R$, if $t_0 = T(x_0)$ we set:

(6)
$$\nu(x_0) = \{ y \in \mathbf{R}^n : ||y|| = 1, \ y * x_0 = \psi(R(t_0), y) \}.$$

Indeed, $\nu(x_0)$ is the set of outer normals to the boundary of $R(t_0)$ at x_0 . Equality (4) can now be improved by:

(4')
$$R(t) = \{x : x \in R, y^*x = \psi(R(t), y), \forall y \in \nu(x)\}.$$

Namely, let $x \notin R(t)$, so that t < T(x). Since the mappings $t \to \psi(R(t), y)$, for $y \ne 0$, are strictly increasing, for any $y \in \nu(x)$ we have:

$$y^*x = \psi(R(T(x)), y) > \psi(R(t), y).$$

Lemma 1. For all $x_0 \in R$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that $||x - x_0|| \le \delta$ implies $\nu(x) \subseteq B(\nu(x_0), \varepsilon)$. $(B(\nu(x_0), \varepsilon) \text{ stands for the set: } \{y \in \mathbf{R}^n : ||y|| = 1, d(y, \nu(x_0)) \le \varepsilon\}$, with $d(y, \nu(x_0)) = \inf_{y_0 \in \nu(x_0)} ||y - y_0||$.

Proof. Suppose a sequence $(x_n, y_n)_{n\geqslant 1}$ be given, such that $y_n \in \nu(x_n)$ and $d(y_n, \nu(x_0)) \geqslant \varepsilon/2$ for each $n\geqslant 1$, and $\lim_{n\to\infty} x_n = x_0$. Taking a subsequence, we may assume $\lim_{n\to\infty} y_n = y_0$ for some y_0 . Indeed $d(y_0, \nu(x_0)) \geqslant \varepsilon/2$, but $y_0^* x_0 = \lim_{n\to\infty} y_n^* x_n = \lim_{n\to\infty} \psi(R(T(x_n)), y_n) = \psi(R(T(x_0)), y_0)$, so that $y_0 \in \nu(x_0)$, which is absurd.

Lemma 2. The minimal-time function T for the control system (U) is locally lipschitz at a reachable point x_0 if and only if $\psi(e^{t_0A} \cdot U, y) > 0$ for every $y \in \nu(x_0)$ (we set $t_0 = T(x_0)$).

Proof. If $\psi(e^{t_0A} \cdot U, y_0) = 0$ for some $y_0 \in \nu(x_0)$ then, given $\varepsilon > 0$ we can find a $\delta > 0$ such that $|t - t_0| < \delta$ implies $\psi(e^{tA} \cdot U, y_0) < \varepsilon$. Using (5) we get:

$$\psi(R(t_0+\lambda), y_0) - \psi(R(t_0), y_0) < \varepsilon \lambda$$

thus $x_0 + \varepsilon \lambda y_0 \notin R(t_0 + \lambda)$ for any λ such that $0 < \lambda < \delta$.

This implies $T(x_0 + \varepsilon \lambda y_0) - T(x_0) > \lambda = \|(x_0 + \varepsilon \lambda y_0) - x_0\| \cdot \varepsilon^{-1}$, and shows that the lipschitz condition fails at x_0 .

Suppose now that $\psi(e^{t_0A} \cdot U, y) > 0$ for every $y \in \nu(x_0)$.

The continuity of ψ and the compactness of $\nu(x_0)$ imply the existence of δ , ρ and m>0 such that, if $|t-t_0| \leq \delta$, $y \in B(\nu(x_0), \rho)$ then $\psi(e^{tA} \cdot U, y) \geqslant m$.

Choose a neighborhood V of x_0 such that $|T(x)-t_0| \le \delta$ and $\nu(x) \subseteq B(\nu(x_0), \rho)$ for every $x \in V$ (this is possible because of Lemma 2 and the continuity of T). We claim that

(7)
$$|T(x_1)-T(x_2)| \le m^{-1} \cdot ||x_1-x_2||$$
 for any $x_1, x_2 \in V$.

To see this, let $t_1 = T(x_1) \leqslant T(x_2) = t_2$. For any $y \in B(\nu(x_0), \rho)$, $t \geqslant t_1$, using (5) we get:

$$\psi(R(t), y) = \psi(R(t_1)y) + \int_{t_1}^t \psi(e^{sA} \cdot U, y) ds \geqslant y^* x_1 + m(t - t_1).$$

Hence $m(t-t_1) \ge ||x_2-x_1||$ implies $\psi(R(t), y) \ge y^*x_2$; so that by (4') $x_2 \in R(t)$. Thus $T(x_2) \le T(x_1) + m^{-1} ||x_2-x_1||$, which proves (7).

For fixed $x_0 \in R$ and $t_0 = T(x_0)$, we say that a vector $w \in \mathbb{R}^n$ is

- a) interior iff the half-line $S = \{x_0 + \alpha w : \alpha \ge 0\}$ contains interior points of $R(t_0)$,
- b) tangent iff w is not interior and $\lim_{\alpha\to 0+} d(x_0 + \alpha w, R(t_0))/\alpha = 0$
- c) exterior iff $\lim_{\alpha\to 0+} d(x_0 + \alpha w, R(t_0))/\alpha > 0$.

These definitions imply the following

Lemma 3. A vector w is exterior, tangent, or interior to $R(T(x_0))$ at point x_0 iff $\max_{y \in \nu(x_0)} y^* w \ge 0$ respectively.

We can now prove the main result:

§ 3. Proof of Conjecture 1

Theorem 1. The minimal-time function T for control system (U) has finite directional derivatives at a reachable point x_0 if and only if T is locally lipschitz at x_0 . In the positive case, $t_0 = T(x_0)$ and $w \in \mathbb{R}^n$ imply

(8)
$$DT(x_0, w) = \lim_{\alpha \to 0+} \frac{T(x_0 + \alpha w) - T(x_0)}{\alpha} = \max_{y \in \nu(x_0)} \frac{y^* w}{\psi(e^{t_0 A} \cdot U, y)}.$$

Proof. We may suppose ||w|| = 1 and consider three cases:

Case 1. w is tangent. T is locally lipschitz, hence $|T(x_1) - T(x_2)| \le k ||x_1 - x_2||$, for x_1 , x_2 in a suitable neighborhood of x_0 and for some k. We have then

$$0 \leqslant \frac{T(x_0 + \alpha w) - t_0}{\alpha} \leqslant k \frac{d(x_0 + \alpha w, R(t_0))}{\alpha}$$

Setting $\alpha \rightarrow 0+$, since w is tangent, we obtain $DT(x_0, w)=0$, which implies (8) in Case 1 because of Lemma 3.

Case 2. w is exterior. We know that the function T is strictly increasing on the half line $S = \{x_0 + \alpha w : \alpha \ge 0\}$. For each $t \ge t_0$ there is exactly one $\alpha(t)$ such that $T(x_0 + \alpha(t) \cdot w) = t$. If we show that

(9)
$$\lim_{t \to t_0 + -\frac{\alpha(t)}{t - t_0}} = \min_{y \in \nu(x_0)} \frac{\psi(e^{t_0 A} \cdot U, y)}{v^* w} > 0,$$

we are done, because then:

$$\lim_{\alpha \to 0+} \frac{T(x_0 + \alpha w) - T(x_0)}{\alpha} = \left[\lim_{t \to t_0+} \frac{\alpha(t)}{t - t_0}\right]^{-1},$$

which gives exactly (8).

For any $y \in \mathbb{R}^n$ with ||y|| = 1 and $y^*w > 0$, and any $t \ge t_0$, we define $\alpha_y(t)$ by means of the formula

(10)
$$y^*(x_0 + \alpha_y(t) \cdot w) = \sup_{x \in R(t)} y^* x = \psi(R(t), y).$$

From a geometrical point of view, $x_0 + \alpha_y(t) \cdot w$ is the intersection point of S with the support hyperplane of R(t) normal to y. Note that $\alpha_y(t)$ is always ≥ 0 , and that $\alpha_y(t_0) = 0$ iff $y \in \nu(x_0)$.

Using (4), we recognize that for any $t \ge t_0$

(11)
$$\alpha(t) = \inf \{ \alpha_y(t) : ||y|| = 1, y^*w > 0 \}.$$

By (10) and (5)

(12)
$$\alpha_{y}(t) = \frac{\psi(R(t), y) - y^{*}x_{0}}{y^{*}w} = \left[\int_{0}^{t} \psi(e^{sA} \cdot U, y)ds - y^{*}x_{0}\right] / y^{*}w.$$

Hence

(13)
$$\alpha_y'(t) = \frac{\partial \alpha_y(t)}{\partial t} = \frac{\psi(e^{tA} \cdot U, y)}{y^* w}.$$

Choose positive δ_0 , ρ_0 , m and M such that $|t-t_0| \le \delta_0$ and $y \in B(\nu(x_0), \rho_0)$ imply $0 < m \le \psi(e^{tA}U, y) \le M$. By Lemma 3, there is an $y_0 \in \nu(x_0)$ for which $y_0^* w = \mu > 0$. Substituting $\alpha'_v(s)$ as given by (13) inside the equality:

$$\alpha_y(t) = \alpha_y(t_0) + \int_{t_0}^t \alpha_y'(s) ds$$

we obtain

$$\alpha_{y_0}(t) \leqslant \frac{M(t-t_0)}{\mu} \leqslant \alpha_y(t),$$

for any y, t as soon as $y \in B(\nu(x_0), \rho_0)$, $y^*w \leq m\mu/M$ and $|t-t_0| \leq \delta_0$. If $|t-t_0| \leq \delta_0$, we can thus write:

$$\alpha(t) = \min_{y \in K} \alpha_y(t), \quad \text{with} \quad K = \{ y \in \mathbf{R}^n : ||y|| = 1, \ y^* w \geqslant m\mu/M \}.$$

Note that K is compact.

The continuity of the function $(y,t) \rightarrow \psi(U,e^{tA^*}\cdot y)/y^*w$ implies that given any $\varepsilon > 0$ we can find δ , $\rho > 0$ such that $\delta \leqslant \delta_0$, $\rho \leqslant \rho_0$ and such that, if $y \in K$, $d(y,\nu(x_0)) \leqslant \rho$, $0 \leqslant t - t_0 \leqslant \delta$ and $K_0 = K \cap \nu(x_0)$, then

$$\frac{\psi(e^{tA}\cdot U, y)}{y^*w} \geqslant \min_{y_0 \in K_0} \frac{\psi(e^{t_0A}\cdot U, y_0)}{y_0^*w} - \varepsilon.$$

Because of Lemma 1 and the continuity of T, there is a neighborhood V of x_0 such that $x \in V$ implies both $\nu(x) \subseteq B(\nu(x_0), \rho)$ and $|T(x) - t_0| \le \delta$. This means that

$$\alpha(t) = \inf \{ \alpha_y(t) : y \in K \cap B(\nu(x_0), \rho) \}$$

as long as $x_0 + \alpha(t) \cdot w \in V$. We have the estimate:

$$\alpha_{v}(t) \geqslant \left[\inf_{y \in \nu(x_0)} \frac{\psi(e^{t_0 A} \cdot U, y)}{v^* w} - \varepsilon\right] (t - t_0), \quad \forall t \in [t_0, t_0 + \delta], \quad \forall y \in B(\nu(x_0), \rho).$$

Thus, for any $\varepsilon > 0$,

(14)
$$\liminf_{t \to t_0+} \frac{\alpha(t)}{t - t_0} \geqslant \min_{y \in \nu(x_0)} \frac{\psi(e^{t_0 A} \cdot U, y)}{y^* w} - \varepsilon.$$

On the other hand it is obvious from (11) that

(15)
$$\lim_{t \to t_0+} \sup \frac{\alpha(t)}{t-t_0} \leqslant \min_{y \in \nu(x_0)} \alpha'_y(t_0) = \min_{y \in \nu(x_0)} \frac{\psi(e^{t_0A} \cdot U, y)}{y^* w}.$$

Combining (14) and (15) we obtain the desired result.

Case 3. w is interior. We can find an $\alpha_0 > 0$ such that the function $\alpha \rightarrow T(x_0 + \alpha w)$ is strictly decreasing for $0 \le \alpha \le \alpha_0$. For all y and t, if ||y|| = 1, y*w < 0 and $T(x_0 + \alpha_0 w) < t \le t_0$, we set:

$$\alpha_y(t) = \frac{\psi(R(t), y) - y^* x_0}{y^* w}$$
 and $\alpha(t) = \sup_{y^* w < 0} \alpha_y(t)$.

The same arguments used in Case 2 show that

$$\lim_{t \to t_0 -} \frac{\alpha(t)}{t - t_0} = -\max_{y \in \nu(x_0)} \frac{-\psi(e^{t_0 A} \cdot U, y)}{y^* w} = \min_{y \in \nu(x_0)} \frac{\psi(e^{t_0 A} \cdot U, y)}{y^* w}.$$

Since $T(x_0 + \alpha(t)w) = t$, we obtain formula (8) again.

To see the converse, note that the existence of finite directional derivatives implies

$$\max_{y\in\nu(x_0)}\frac{y^*w}{\psi(e^{t_0A}\cdot U,y)}<+\infty,$$

thus $\psi(e^{t_0A} \cdot U, y) > 0$ for any $y \in \nu(x_0)$. Apply then Lemma 2.

If U is a neighborhood of the origin, T is locally lipschitz at every reachable point ([2], Prop. 4), thus Conjecture 1 is proved.

Corollary 1. If T is locally lipschitz at x_0 , $t_0 = T(x_0) < +\infty$, and if the boundary of $R(t_0)$ has only one outer normal at x_0 , that is $\nu(x_0) = \{y_0\}$, then T is differentiable at x_0 , and its derivative is:

$$DT(x_0) = \left[\max_{u \in U} y_0^* e^{t_0 A^*} \cdot u \right]^{-1} \cdot y_0.$$

§ 4. Proof of Conjecture 2

In order to prove the second statement, we need only show that if the constraint set U is smooth, so are all reachable sets R(t) for t>0. To this purpose, for each compact convex $\Omega \subseteq \mathbb{R}^n$ we define a relation $\sigma(\Omega)$ by setting: $S^{n-1} = \{y \in \mathbb{R}^n : ||y|| = 1\}$, $\sigma(\Omega) \subseteq S^{n-1} \times S^{n-1}$ and $(y_1, y_2) \in \sigma(\Omega)$ iff there exists some $x \in \Omega$ for which both $y_1^*x = \psi(\Omega, y_1)$ and $y_2^*x = \psi(\Omega, y_2)$ hold.

Geometrically, this means that y_1 and y_2 are exterior normals to the boundary of Ω at a same point x. Indeed this boundary is smooth iff $\sigma(\Omega)$ reduces to the diagonal $\Delta(S^{n-1} \times S^{n-1})$.

Lemma 4. Let $\Omega(t)$ be a compact convex set in \mathbb{R}^n for each $t \in [0, t_0]$, $t_0 > 0$, and let the mapping $t \rightarrow \Omega(t)$ be continuous relative to the Hausdorff metric. Then:

(17)
$$\sigma\left(\int_{0}^{t_{0}} \Omega(t)dt\right) = \bigcap_{t \in [0,t_{0}]} \sigma(\Omega(t))$$

Proof. It is a simple geometrical fact that $(y_1, y_2) \in \sigma(\Omega)$ iff

(18)
$$\psi(\Omega, y_1) + \psi(\Omega, y_2) = \psi(\Omega, y_1 + y_2).$$

In any case

(19)
$$\psi(\Omega, y_1) + \psi(\Omega, y_2) \geqslant \psi(\Omega, y_1 + y_2).$$

It follows that

$$(y_1, y_2) \in \sigma \left(\int_0^{t_0} \Omega(t) dt \right)$$

iff

$$\psi\left(\int_0^{t_0} \Omega(t)dt, y_1\right) + \psi\left(\int_0^{t_0} \Omega(t)dt, y_2\right) = \psi\left(\int_0^{t_0} \Omega(t)dt, y_1 + y_2\right),$$

that is

(20)
$$\int_0^{t_0} [\psi(\Omega(t), y_1) + \psi(\Omega(t), y_2)] dt = \int_0^{t_0} \psi(\Omega(t), y_1 + y_2) dt.$$

From (19) and the continuity of the integrands in (20) we deduce that (20) holds iff these integrands are equal for all t, that is iff $(y_1, y_2) \in \sigma(\Omega(t))$ for every $t \in [0, t_0]$.

Theorem 2. If the constraint set U of the control system (U) is a neighborhood of the origin and has a smooth boundary, then the minimal time function T is C^1 in $R-\{0\}$.

Proof. Using (1) and (17) we obtain

$$\sigma(R(t)) = \bigcap_{s \in [0,t]} \sigma(e^{sA} \cdot U) \subseteq \sigma(U) = \Delta(S^{n-1} \times S^{n-1}).$$

Thus R(t) is smooth for every t>0, and $\nu(x)$ consists of just one point, for any $x \in R-\{0\}$. Then by Corollary 1, DT exists, and hence, by Theorem 5 in [2], DT is continuous.

References

- [1] Aumann, R. J., Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12.
- [2] Hájek, O., On differentiability of the minimal time function, Funkcial. Ekvac., 20 (1977), 97-114.

nuna adreso: Instituto di Matematica Applicata Via Belzoni 7—35100 PADOVA, Italy.

(Ricevita la 9-an de marto, 1979) (Reviziita la 4-an de oktobro, 1979)