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On two conjectures by Hajek
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§1. Introduction

In this paper we are concerned with the control system in the Euclidean n-space
R", represented by

(9)) xX—Ax=u wit)e U

under the following assumptions.

The dimension 7 of state space is at least 1, the coefficient matrix 4 is a real n-
square, the constraint set U is compact and convex and contains the origin; the
control system is proper, in the sense that R(¢) is a neighborhood of 0 for each ¢>>0;
we suppose to start with the system in the origin at time #=0, and call R(¢) the re-
achable set at time # >0:

R(®)= {J: e*4.u(s)ds: measurable u: [0, ] > U }

(1)
:Jt e*4. Uds (in the sense of Aumann).
0
For any x € R=\_J,>, R(¢), the minimal time function T is defined by:
(2) T(x)=inf {t: x e R(¢)}.

Referring to Hajek’s paper [2] we give here a proof for his two conjectures:

Conjecture 1. If U is a neighborhood of the origin, then 7" has directional deri-
vatives at each point x € R.

Conjecture 2. 1If in addition the boundary of U is a differentiable (z— 1)-mani-
fold (i.e. for each point of the boundary there is a unique support hyperplane), then
Tis C'in R—{0}.

§ 2. Some preliminary notions and lemmas

The proofs given here are based upon the well-known representation of compact
convex sets by means of their support function. Dealing with the family #.(R ") of
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compact subsets of R", we always use the Hausdorff metric. We set:
(3) (8, y)=sup y*x

for any compact convex QC R” and y e R*. + is continuous with respect to both
arguments.
For the control system (U) we have:

4) R(t)={x e R": y*x<Y(R(1), y), Vy € R*},
and
(5) WR(), y)= j W, eSA*-y)ds=j: W(e*. U, y)ds.

For any x, e R, if f,=T(x,) we set:
(6) v(xp)={y e R":||y]l=1, y*x,=v(R(%), »)}-

Indeed, v(x,) is the set of outer normals to the boundary of R(%,) at x,. Equality
(4) can now be improved by:

(4) R(t)={x:xe R, y*x=y(R(1), y), ¥y € v(x)}.

Namely, let x ¢ R(z), so that t<T(x). Since the mappings t—-(R(), y), for y=£0,
are strictly increasing, for any y e v(x) we have:

YEx=9(R(T(x)), »)>W(R(2), »).

Lemma 1. For all x,e R and ¢>0, there exists a §>0 such that | x—x)||<d
implies v(x) S B(u(x,),€). (B((x,),¢) stands for the set: {y e R*:||y||=1,d(y,v(x,))<e},
with d(p, v(x,)) =inf,,c. o |V —ol])-

Proof. Suppose a sequence (x,,¥,),»: be given, such that y, e u(x,) and
d(y,, v(x,)) =¢/2 for each n>1, and lim,_., x,=x,. Taking a subsequence, we may
assume lim,__ y,=y, for some y,. Indeed d(y,, v(x,))>¢/2, but yFx,=lim,_ . y¥x,
=lim,_ .. V(R(T(x,)), )= (R(T(x,)), ¥o), so that y, € v(x,), which is absurd.

Lemma 2. The minimal-time function T for the control system (U) is locally
lipschitz at a reachable point x, if and only if (e**- U, ) >0 for every y e v(x,) (we
set t,=T(x,)).

Proof. 1If 4(e4-U, y,)=0 for some y, € v(x,) then, given ¢>0 we can find a
0>0 such that |[z—¢#,|<§ implies y(e*- U, y,)<<e. Using (5) we get:

Y(R(t,+2), Yo) — W(R(%), y))<ed,
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thus x,-+-edy, ¢ R(t,--4) for any 2 such that 0<2<6.

This implies T(x,+eayy) — T(x) >2=]|(x,+ed¥y) — X,||-¢~*, and shows that the
lipschitz condition fails at x,.

Suppose now that (e*4. U, y) >0 for every y € v(x,).

The continuity of +» and the compactness of v(x,) imply the existence of 8, p and
m>0 such that, if |1—1,|<3, ¥ € B(u(x,),p) then (e*4- U, y) =m.

Choose a neighborhood ¥ of x, such that | T(x)—¢,| < & and »(x) & B(x(x,), p) for
every x e ¥ (this is possible because of Lemma 2 and the continuity of 7). We claim
that

(7) [ TCe)— T(xy) | <m™" || 3, — x| for any x;, x, € V.

To see this, let #,=T(x)<T(x,)="t,. For any ye B(u(x,), o), t >1,, using (5)
we get:

VR(), ») =4 (R(t) )+ j (e U, p)ds> yx,+m(t—1,).

Hence m(t—t,) >| x,—x,|| implies ¥(R(z), y) > y*x,; so that by (4') x, e R(z).
Thus T(x,) < T(x,)+m™* || x,—x, ||, which proves (7).

For fixed x, € R and #,= T'(x,), we say that a vector w ¢ R” is

a) interior iff the half-line S={x,+aw: a >0} contains interior points of R(z,),

b) tangent iff w is not interior and im,_,, d(x,+aw, R(Z,))/ec=0

c) exterior iff im,_y, d(x,+aw, R(t,))/e>0.

These definitions imply the following

Lemma 3. A vector w is exterior, tangent, or interior to R(T (xo)) at point x,
iff max, e, ., y¥W=0 respectively.
We can now prove the main result:

§3. Proof of Conjecture 1

Theorem 1. The minimal-time function T for control system (U) has finite direc-
tional derivatives at a reachable point x, if and only if T is locally lipschitz at x,. In
the positive case, t,= T(x,) and w ¢ R™ imply

(8) DT (x,, w)= lim T +aw)—T(x) _ = max _y_w_
a—0+ o Yy Ev(xo) 1[/(8“"1 U y)

Proof. We may suppose ||w|| =1 and consider three cases:

Case 1. wis tangent. T is locally lipschitz, hence | T'(x,)— T(x,)| <k || x,— X, |,
for x,, x, in a suitable neighborhood of x, and for some k. We have then
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0< T(xo—i_OO;W)—to <k d(xo‘f“ao‘:’, R(t,))

Setting «—0+, since w is tangent, we obtain DT (x,, w)=0, which implies (8) in
Case 1 because of Lemma 3.

Case 2. w is exterior. We know that the function T is strictly increasing on
the half line S={x,+aw: ®>0}. For each 7 >, there is exactly one a(¢) such that
T(x,+a(t)-w)y=t. If we show that

(9) lim ﬂz min _‘W'—U’y)>0’

t—to+ t—to yev(@o) y*w
we are done, because then:

lim T(x+aw)—T(x) :[lim a(?) ]_1,

a—0+ (44

t—to+ [— tO

which gives exactly (8).
For any y € R" with | y|=1 and y*w>>0, and any 7>, we define «,/(¢) by
means of the formula

(10) YCrotay(t) W)= sup yrx=vy(R(®), 7).

From a geometrical point of view, x,+ e, (¢)-w is the intersection point of S
with the support hyperplane of R(¢) normal to y. Note that «,(¢) is always >0, and
that «,(7,)=0 iff y € v(x,).

Using (4), we recognize that for any ¢ >,

an a(t)=inf {a(t): ||¥||=1, y*w>0}.
By (10) and (5)
(12) a,(t)= \P(R(I)J:gz)—y*xo - UZ w(e. U, y)ds—y*xo]/y*w.
Hence
(13) o ()= dar,(1) — (e U, y) .
Y ot »y*w

Choose positive d,, p,, m and M such that |1—1,|<3, and y e B(x(x,), p,) imply
0<m<(eU, )< M. By Lemma 3, there is an y, € v(x,) for which yfw=p>0.
Substituting a(s) as given by (13) inside the equality:

ozy(t):ocy(to)—l-ﬁ o(5)ds
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we obtain

M@—1) <a, (1),
7

ay (1)<
for any y, ¢ as soon as y € B(u(x,), po), V'w<mu/M and |t—1,|<d,. If [1—1,[<d,,
we can thus write:

a(t)=min a,(t), with K={ye R":|y||=1, y*w>mp/M}.
yeEK

Note that K is compact. v

The continuity of the function (y, £)—(U, 4" y)/y*w implies that given any
¢>0 we can find §, p>0 such that §<d, p<p, and such that, if y ¢ K, d(p, v(x,))
<p, 01— 1,< 6 and K,=KNv(x,), then

‘If(em : Ua y) > min w(etOA : Ua yo) _

e
y¥w Y€ Ko yiEw

Because of Lemma 1 and the continuity of T, there is a neighborhood V of x,
such that x ¢ V implies both v(x)< B(x(x,), p) and |T(x)—1,|<6. This means that
oft)=inf {&,(1): y ¢ KN B((xy), p)}

as long as x,+aft)-we V. We have the estimate:

ay(z)>[ inf M—s](z—to), Vi€ [ty ,43], VY e B, o).

yev(xo) y*w

Thus, for any >0,

tod
(14) fiminf %0 > min ¥E-U0)
t—to+ t—-to yEv(zo) y*w

On the other hand it is obvious from (11) that

1s) lim sup —a(z)——é min «(f,)= min M_

t—~to+ t—1, yEv(wo) yEv(wo) y*w
Combining (14) and (15) we obtain the desired result.

Case 3. w is interior. We can find an «,>0 such that the function a—
T(x,+aw) is strictly decreasing for 0a<{a, For all y and ¢, if ||y|=1, y*w<0
and T(x,+ a,w)<t < t,, we set:

()= YROD=Y S g o)
y*w

sup e, (1).
yrw<0
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The same arguments used in Case 2 show that

. tod , . tod |
lim a(?) — _ max (e U, y) = min Y(e™-U, p) .
t~to~ F—1, ¥€»(z0) y¥w yEn(z0) y¥w

Since T'(x,+ aft)w)=t, we obtain formula (8) again.
To see the converse, note that the existence of finite directional derivatives
implies

y*w

max —— oo,
Yy€v(zo) 1[f(e‘°"- U, y) < +

thus yr(e’4- U, y) >0 for any y € u(x;). Apply then Lemma 2.
If U is a neighborhood of the origin, T is locally lipschitz at every reachable
point ([2], Prop. 4), thus Conjecture 1 is proved.

Corollary 1. If T is locally lipschitz at x,, t,=T(x,)<+ oo, and if the boundary
of R(t,) has only one outer normal at x,, that is v(x,)={y,}, then T is differentiable at
X,, and its derivative is:

-1
DT(x)= [max ysketOA*'u] Yo
uel

§4. Proof of Conjecture 2

In order to prove the second statement, we need only show that if the constraint
set U is smooth, so are all reachable sets R(¢) for £>>0. To this purpose, for each
compact convex £2C R™ we define a relation ¢(2) by setting: S™'={ye R":|y||=1},
(S 1 S* ! and (3, y,) € a(£2) iff there exists some x e £ for which both y¥x

=92, y1) and yFx=1(%, y,) hold.

v Geometrically, this means that y, and y, are exterior normals to the boundary
of 2 at a same point x. Indeed this boundary is smooth iff ¢(£2) reduces to the dia-

gonal A(S™*x 8™,

Lemma 4. Let £)(¢) be a compact convex set in R™ for each t € [0, t,], t,>>0, and
let the mapping t—£X(t) be continuous relative to the Hausdorff metric. Then:

a7 a(ﬁoﬁ(t)dt>= N o(Q0)

t€[0,t0]

Proof. It is a simple geometrical fact that (y,, y,) € o(2) iff

In any case
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(19) Y2, y)+4(2, y) (2, yi+2)-

It follows that

(7 1) € a(j: Q(t)dt)

iff

TR A | )
that is
@0) [ @@, 5+, yna= " (@, 3.+t

From (19) and the continuity of the integrands in (20) we deduce that (20) holds
iff these integrands are equal for all ¢z, that is iff (y,, y,) € a(2(¢)) for every ¢ e [0, ¢,].

Theorem 2. If the constraint set U of the control system (U) is a neighborhood
of the origin and has a smooth boundary, then the minimal time function T is C" in
R—{0}.

Proof. Using (1) and (17) we obtain
o(R(t)= ﬂ] o(e™- U)Sa(U)=4(S" " x §"7Y).

e[o,¢
Thus R(?) is smooth for every >0, and v(x) consists of just one point, for any
x ¢ R—{0}. Then by Corollary 1, DT exists, and hence, by Theorem 5 in [2], DT is
continuous.
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