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§1. Introduction.
Let a(-) be a real valued C'[0, oo)-function satisfying
1.1 a(s)>0 for 5 € [0, o).
We consider the initial-boundary value problem (IBVP) for degenerate quasilinear

hyperbolic equations

(1.2) (%, t)——a(L 7u(, ;)|2dy>Au(x, £)— du,(x, 1)=0

on 2% (0, oo) where 2 is a bounded domain with its boundary 882 in the n-dimen-
sional Fuclidean space R*. When

(1.3) a(s)>a,>0 for s € [0, c0)

for some constant «, instead of (1.1), Eq. (1.2) has a classical solution with null
Dirichlet boundary condition and suitable initial data, which is unique and decays
exponentially as #—oo. V

Our aim in this paper is to show the existence, uniqueness, regularity and
asymptotic behaviour of the solution to (1.2) under the condition (1.1). We shall
remark about the asymptotic behaviour: in general the decay property of the solution
to (1.2) cannot be expected for an arbitrary a. In fact, let s, be a positive number

such that a(s,)=0 and let u,(x) satisfy uy(x) € H>(2), uy(x)};0=0 andj |Pufx) Fdx
2

=s,. Then u(x, t)=u,(x) is just a solution to (1.2) with initial conditions
u(x, 0)=u,x), u,(x, 0)=0
and boundary condition
u(x, t)],,=0.

We note that such #,(x)’s are infinitely many, and that the above example is appli-
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cable to (1.4), (1.5) appeared below. However, we can prove the decay properties
of the solution to (1.2) with a(s)=s.

We mention about related results. The equation (1.2) arises in the study of the
motion of an elastic string. The equation related to (1.2) are

(1.4) un—a<fg Pu(y, t)|2dy>du:0
(1.5) un—aqg [Fu(y, t)|2dy>Au+uL=O
(1.6) un—agg \Pu(y, t)|2dy)Au—|—A2u=0

and etc., which are studied together with (1.3) by many authors; for (1.4) Dickey [5],
[8], [9], Nishida [22], Menzala [17], Rodriguez [24], Greenberg and Hu [12], Pohozaev
[23], Nishihara [20] (see also Lions [15]); for (1.5) Dickey [6], Brito [3], Yamada [27],
Nishihara [21]; for (1.6) Ball [2], Dickey [7], Medeiros [16], Menzala [17], Yamaguchi
[28] and others. The degenerate case is proposed in Lions [14], [15]. However, in
our results the strongly damping term is necessary.

The (IBVP)’s for the other (degenerate) quasilinear hyperbolic equations, such
as

(17) utt—o(uz)x_uxu =.f;

are investigated by many authors, Tsutsumi [26], Andrews [1], Greenberg, MacCamy
and Mizel [11], Greenberg [10] and etc., while the periodic problems to those are
also studied by Clement [4], Kakita [13], Sowunmi [25], Narazaki [19] and etc.. Ina
final section, we shall show the existence of periodic solutions to (1.2) with the
periodic forcing term when a(s)=s.

Acknowledgment. The author should like to express his sincere gratitude to
Professor Takao Kakita for his helpful suggestions and constant encouragment and
also to Professor Masaru Yamaguchi for his kind advices.

§ 2. Formulation of the problem and results.

Let H be a real, separable Hilbert space with norm ||-|| and scalar product
(-, -). Let A4 be a linear operator in H with domain D(4) dense in H. We assume
that A satisfies the following conditions:

(H1) A is a self-adjoint, positive definite operator with discrete spectrum.

Then the linear operator A7 (r>0) with domain D(4") is well-defined and the
condition
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(H2) the inject  on D(A4") into D(A™), r>r">0, is compact
is assumed. It is also assumed that
(H3) ae C'[0, o) with a(s)>0 for s>0.

In the space H we now consider the initial value problem to the equation
2.1 (1) +a(| A'"u(®)|") Au(t) + Au'(£) =0
with ‘boundary’ condition
2.2) u(t), #/'(t) e D(A) for any ¢ € [0, o)
and initial data
2.3) u(0)=u,, W (0)=u,,

which is the abstract form of (/BVP) to (1.2). Here we denote '=d/dt and "=
d*/dt*.
Then we have the followings:

Theorem 1 (Existence and uniqueness). We assume the conditions (H1)-(H3)
and

(H4) wu,e D(A) and u, e D(A').

Then there exists a unique solution ue CY[0, 00); H) of (2.1)~(2.3) satisfving Au,
AV e L=(0, oo ; H) and Av', v’ e L*(0, oo ; H).

Theorem 2 (Regularity). We assume
(HS) both u, and u, are belonged to D(A**).

Then the unique solution u in Theorem 1 satisfies u ¢ C¥[0, co); H), A*u, Au', A"
e L=(0, oo; H) and A, Av’, "’ ¢ LX0, oo ; H).

Theorem 3 (Regularity). If we assume
(H6), wu,e D(A*) and u, e D(A*-?), k>2,

then the solution u in Theorem 2 satisfies A*u, A*""*u’ ¢ L0, co; H) and A*/' e L?
O, co; H).

The bounded solution of (2.1)~(2.3) obtained above cannot be expected the
decay properties, as indicated in Introduction, provided that there exists s,>>0 such
that a(s,)=0. But when a(s)=s we have

Theorem 4 (Decay). Let (H1), (H2) and (H5) be assumed and let u be the unique
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bounded solution to the equation
(2.4) w’ ()| 4""u(t) |*Au(t) + Au'(1) =0

with (2.2) and (2.3). Then u(t) satisfies the following decay properties:

@.5) (10| 4u(t) | < C,

2.6) (1-+0)'"=*| du(t)|| < C.

2.7) (1—|—t)3/2‘€|[AI/2u’(z‘)[|gC5

@.8) 1+ <C.

@.9) j (142)=* | AV(2) [tdz < C,

Sfor each positive constant ¢ and some constant C, depending upon ¢ such as C.—oo as

e—0.

Remark. 1If a(s)>a,>0 for some constant q,, then it is easily seen that the
solution u(t) to (2.1)-(2.3) with its ‘higher derivatives’ decays exponentially to zero
as t tends to infinity (cf. Nishihara [21], Yamada [27]).

§3. A priori estimates.

We employ Galerkin’s procedure for the proofs.
The condition (H1) implies that 4 has an infinite sequence of eigenvalues {13}
with
0<HE<ES - <B< -+, imB=oo

Jooo

and there exists a complete orthonormal system {w,} in H, wach w; being an eigen-
vector to 43. For each u € H, we have an expantion:

U=, uw;, uy;=(u, wy)

~r

1

J

o 12
with [[ul|= (Z u‘;) . Ifu e D(4"), there holds
=1

o o 172
Afu=73" 2Fu,w, with HA’“uH:(Z lﬁ»’%{ﬁ) .
= =1

We now define Galerkin’s approximation um(t)zzm: g;im(t)w; as a solution to
j=1
the initial value problem for the system: ’
@B @) +a(| A u, (@) P Au,, () + Aul(r), w)=0 for any fixed we V™,

with data
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um(0)=§_', aw; —> i, strongly as m—»co

(3.2 .
u,(0)=>2 B;w;, —> u, strongly as m— oo,

j=1

where V™ is an m-dimensional vector space spanned by {w,, ---,w,}. Then we
obtain certain nonlinear ordinary differential system for the g,,,’s, which has a unique
C*-solution defined on some interval [0, t,,) since a € C'[0, oo).

We estimate the u,, under the condition (H4).

(I) Putting w=2u,(t) in (3.1) we have

(3.3) “57[” Un() P+ (| A" (D) )]+ 21| A () =0

where ci(s):J's a(z)dr. Integrating both sides of (3.3) from 0 to ¢ (¢<¢,) and using

0
(3.2), we have

13
() I+ (| A un(2) ) +2 L | 4" ur () [Pde < uy [P+ A(| 4w | )
from which we obtain
(3.4) (< Cs
(3.5) [am@prae<c.
0

(From now on we denote by C or C, (i=1, 2, - - -) various constants independent of

t and m.)
(II) Putting w=u,(?) in (3.1), we have

a

7 @) un() =[O [+ a ([ A (D) | A2, ()

(3.6 {4
+ o 147 =0

and integrating (3.6) over [0, ¢], <¢,,, we get by (3.4)
[ at 4 50,@ Pl 2000 P 4 0, O
0

14720, O+ [ [16(2) il + U O), 1 (O) = (W (1), (1)

o l\)|*“

< A P+ 5 [ A7) P+ O L4 (0]

2
LCH(C/2) |47 u, (@),
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from which it follows that

G |4 Pu, (1) < C,
and
G.9) [ a4mu,@ P14 @rar<c.

From (3.4) and (3.7) we conclude that all the intervals [0, #,,) are extended to the
whole interval [0, co).
(II) Taking w=Au,(t) in (3.1) and integrating it over [0, ¢), we have

a(| A un () ) || Aun (@) [P+ —;— %HAum(t) I

(3.9) i
= __dt_(Alﬂu;n(t), AU (D) || APl (1) |

and
[ a0 4@ Pl s @I+ | @) P

<+ ot ) At ()| [ 4726, e
<C+Cll Au (),

the latter of which means

(3.10) 0] <C
and
@3.11) [ a0 4mu,@ P A @Ide<cC.

(IV) Taking w=2A4u,(t) in (3.1), we have

A1) P+ 2] 1) [P = = 20 A0 ) (A6, A (1)
sa(nAlﬂum(t)HZ)(al||Aum<t)[12+alnAu:n(r)HZ)
<4, a(| A, )Y | Aun() P A

that is,
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@12 A () 4 | A () < 0y A (D) P A
where @, =max{a(s); 0<s<C,}. Then, integrating (3.12) over [0, ¢], we have

A (0 P+ [ A (@) P <) A+, [ @) 40, @) D] A0 Pl

which gives by (3.11)

(3.13) | A2 (1) ]| < C
and
(.14) J: | A, (o) [Fd < C.

(V) Putting w=u/,(¢) in (3.1), we have

g VHOTH 55 AL =~ el A D) (A0, A7 0)

+ 20/ (|| A u () PUA st n(8), A (1)) + @ (| A0 (2) ) | A0, ()|

and
[ @ pae+ 14

S 1A u P+ a | 4[| [| Ay [+ a4 | A () ||| A 0 (2) |

1

2
£ £

+Zazj i!Al/zum(f)ileA”zuin(r)HdeJral_[ 4" u, ()| dx,
0 0

where a,=max{|a/(s)|; 0<s< C}. Hence, by (3.5), (3.7) and (3.13),

(3.16) j (2 Fdr < C.

Assuming (H5) we proceed a priori estimates.
(VD) Similarly to (IIT), taking w=Au,(¢) in (3.1) derives

(3.17) [ A u ()| <C

and

(3.18) J (| A (@) A7 () P < C.
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(VII) Also, similar estimates to (IV) yield

(3.19) | Au ()| <C
and
(3.20) [: |41 (2) fdr < C

by virtue of (3.18).
Now we differentiate (3.1) with respect to ¢ and have

(3.21) (D) +a(| A" u,(2) ) Aut (1)
+20'(| A1 () YA Pu (1), A P21 () At (1), w)=0.

(VIII) Putting w=2A4u,/(¢) in (3.21) we have
%[HA”Zu%i(t)HZ-I-a(ilz‘ll’zum(t)H?)llfiu’m(t)Hz]~l-2\|161u$£(t)ll2
=2a'(|| A"*un () |F) (A" (1), A"t (1)) (| Aur (1) P —2(Au (1), Auz(1)))

or

3.2) —Z—[H AP (O |F+ a (| 4 u (0 P) | A (8) P14 || AP

S C(| Aup D)+ A (D) [P

by (3.7), (3.10) and (3.13). Integrating (3.22) over [0, ¢] leads to

(3.23) | A un ()< C
and
(3.24) j: | () Pde < C.

Here || A%,(0)|* << C follows from (3.1) and (HS).
(IX) (3.21) with (3.5), (3.7), (3.10), (3.14) and (3.24) yields

(3.25) [C1wre@ra<c

§4. Proof of Theorem 1.

By virtue of a priori estimates (3.10), (3.13), (3.14) and (3.25), we may extract a
subsequence {u,} of {u,} with the properties



Degenerate Quasilinear Hyperbolic Equation 133

“.1) u,—u in L=(0, co; D(A4)) weakly*

“.2) u,—t’ in L=(0, co; D(A*))N L¥O, oo ; D(A)) weakly*
4.3) u—u"” in LX0, oo ; H) weakly

and

4.4 a(|A"u,(-)|[HAu, —> in L=(0, oo ; H) weakly*

for some u and X.

We must show X=a(|4"*u(-)|)Au. For any ¢ e C0, oo; H) and T>0 we
have

[ a—at 2@ P e, = 0t~ all47u,0) A, (2), 9)de
@5+ a0 e — Aue), dde
+[ @@ ) — a4 ) A 2, P,

But, by the mean value theorem and by (4.1) and (H2),
|the last term in (4.5)|

<C f " (A", (2)— Au(c), AV (2)+ APu(2)) |
0
T

< [[ 140~ 4u(@)|de0  as oo,

The other integrals in right-hand side in (4.5) also tend to zero. The arbitrariness
of ¢ and T implies X=a(||A"*u(-)|?)Au. Hence we get (2.1) for almost all z. The
initial conditions (2.3) follow from (4.3) and the next Lemma 1.

Lemma 1 (Ball [2]). Let X be a Banach space. If fe L*0, T; X) and f’ e L?
0, T'; X), then f, possibly after redefinition on a set of measure zero, is continuous from
[0, T] to X.

Thus the existence part of Theorem 1 is completed.
In order to prove the uniqueness part, let u and v be two solutions of (2.1)—
(2.3). Then w=u—v satisfies

w(t)+a (| A7u(@) ) Aw() + Aw'(2)

(4.6)
= —[a(|A""u(®)|P)—a(|4"*v (@) D] Av(t)

and
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@.7 w(0)=0,  w(0)=0.

Applying 2w'(£)+7w(t), 0<r<2j, to (4.6)-(4.7) and integrating it over [0, ¢], we
have

[IlW’(t)1|2+a(llA"ZM(Z)!IZ)HA"ZWH%L%IIAI”W(t)H2+T(W’(t), w(t))]

+f: Rl AW @I =T IW @I +a(l47u@) ||| 4 *w()|lde

GO [ peqemnmp e, 4@ | 2ol
— (@ 4"u(@)[F)—a(| A0 () DHAAVE), W @)+ (A 0(), A w(=)}de
<C [ IW@ I+ 4"w@)|1de
since

la(| A" u(z) ) —a(| 40 (@) )L C(| A u(z) ||+ | A*v() ) || A *w(D) |.
We estimate the left-hand side of (4.8) from below:
(st term) > w/(5)]f+ L | 42w(0) g(% @I+ 2 wolF)
2cfl| W@+ A w(@) P, co=min(1—7/23, 7/4)
and
(second term) 2{‘ QZ—T7)||W(2)|Fdr>0.

Therefore (4.8) yields

Gl WO+ 4O F1<C [ IW@IF+] A Fide

which concludes w=0.
Thus Theorem 1 is completed.

§ 5. Proofs of Theorem 2 and 3.
Proof of Theorem 2. The unique solution u(¢) in Theorem 1 satisfies
(EN)) u e L>(0, oo ; D(A4*?)) ‘
5.2 u' e L0, oo ; D(A))N L¥0, oo ; D(4**)
(5.3 u” e L*(0, oo ; D(AVH))N L¥0, oo ; D(A))
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and
5.9 " e L¥0, oo; H)

by (3.16)-(3.19) and (3.22)-(3.24). Combining Lemma 1 and (5.1)-(5.4) implies
ue C* ([0, 0); H). Q.E.D.

Proof of Theorem 3. Putting w=A**""u,(t),k=2,3, ---, in (3.1) and inte-
grating it from 0 to ¢, we obtain

59 |4, 0)<C
and
56 |7 a@a @ Pl 1@ rdz<c

by the similar way to (III). Then, similarly to (IV), we get

(5.7 A* " u (D)< C
and
5:9) [C1u@ra<c,
0
using (5.6). Hence Theorem 3 follows from (5.5), (5.7) and (5.8) Q.E.D.

§ 6. Proof of Theorem 4.

From Theorem 2 it suffices to obtain the apriori estimates (2.5)—(2.9) to u,(?),
which satisfies

6.1 () + 1| AU (0) [P Au(8) + Aui (1), w)=0  for any we V™

together with (3.2). Since a(s)=s, (3.5) and (3.8) give

6.2) f: | 47 (@) |fd < C
and
6.3) f 0 1A4"u(z) [fdz < C.

(From now on we abbreviate the suffix m for simplicity.)

Multiplying (3.3) by (1+4¢) and integrating it over [0, ¢], we have
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d 7 2 1 1/2 4 1/2,.7 2
A o(iw @ r+5 14l |+ 2010 |40
= @)+ 4 o) |
and

A+0(lw @ P+ [ 4@])+2 [ A+ 45 Fde
6.4) t
<l P ol [ (1 @[+ @) ).

By virtue of (6.2), (6.3) and (HY), (6.4) gives

(6.5) A+nldOF<C

(6.6) (A+)[A™ @) <C

and

6.7 j : (42| A7/ (2) fdz < C.

Multiplying (3.6) by (1 +1)'*-¢ for small positive constant e, we have
L PO e e (R PRMOT
= (2= ) (L) A Pu(0) P (L1 )
—%(1 O (), u(t)) 4 (12— ) (1 1)~ 2= (1), u(t))
which yields, by integration over [0, #] and by (6.2)-(6.3), (6.5)-(6.7),
[Laor-ar@rdet 2 (407 aru);
< A s (2 ) @) |+ [ (14277 | A7) e
+f arepr-ep@pdrt - [ a+0w@ue |z
<CHA+DIWOI [u®) |+ [ 1+0) |4 @Fds

+ (], arara) ([ 1 rac)”

+2L21miix lu(2)]]- (f: ¢! +r)“1—26d.[>1/2(£° |4 () sz‘[)l/z —c.
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Here we denote by C, the constant depending only upon

I: (142)-'-<dr.
Hence we obtain
68) [Carorearu@ rar<c..
By induction we shall show
69 [ aroramu@rac<c,,

(6.10) (A+0) 2|47 u@) [P < Cop,

the latter of which gives (2.5). For N>1 we assume

611, j (1412)'27" 52| Au(z) |fdr < C.y,
0
(6.12)y (1 £)' =2 2| 42u(1) [F< Cp

137

Note that (6.11), and (6.12), are valid from (6.8) and (6.6). Multiplying (3.6) by

(141)'-*"""*-*2 and integrating it over [0, ¢], we get
(1+t)1A2~N*1—s/2HAl/zu(t)”tl__;__dqt_(l_|_t)l_z—N-l-s/zHAl/zu(t)Hz

(=277 —gf2) (1) 2= A

l\.)lr—l

+(1 +r)‘-Z‘N"“éﬂuu'(t)w—%(l OISR (2), u())

(A —=27"—g/2) A1) (1), u(?))
and

[[aeprem @ e+ 2 A
%nAlﬂuonwnulunuon+ (f (142)-'- sﬂdr)
x(J, o anElds) o [T ol 4 s

+ zl {A+D I OIFF A+ 1) 27" A u () Py

+2l1sgp @ ([ a+o--ar) ([T a+alam@ids) <Cp
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This shows (6.11) ., and (6.12),,. Thus we obtain (6.9) and (6.10) by selecting N
so that 2-7 <¢/2.
Also multiplying (3.3) by (14¢)*~° and integrating it over [0, ¢] yields
(1+t)2‘5(llu’(t)llz+% !{A‘/Zu(t)lf‘)+2 J‘t (It+oy=<|| 4"/ (2) [Pd=
0
<l P 47l 42 [ (27 @I+ - 4G ) e

which, combined with (6.7), (6.9), gives

(6.13) A+ @)L C.p

(6.14) f (142 42/(2) |Fd e < C. .
0

Multiplying (3.14) by (1+1¢)°~° and integrating it over [0, f] we have
a +t)3“HU”(t)II2+—;—%(1 +o)c|| AV () I

(3—6)(1+t)“HAl’Zu’(t)|J2~—%{(1+t)‘"“EIIA“?u(t)liz(Au(t), w'(1)}

| =

+@—a (A1) * | A u(@) (4" u(t), A" (1))
+ (141 {2(4 7 u(t), AW (O +[| 4 u (D) || 4" ()}

and, by virtue of (6.9), (6.10), (6.13), (6.14),
[l aso-w@ppds+ L a+or-jamorp
< A A P A S [ (o 4 ) e
AU [P+ 1 A7) |
+3sup(1 -+ 4@ [ o 4 de)
X ([T aop-rrame@ide) "3 supl(1-+ey' -7 4 u(o) 7
X[ ey pae

L Coput Coplsup{(1+2)'*|| 47/ (1) T
t

This implies

(6.15) j: (142 w(2)|fde< Cys
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(6.16) (27| 47 (O | < Copre

(6.16) gives (2.7).
In (3.21), putting w=2(141¢)*~*’/(¢) and integrating it from 0 to ¢, we obtain

—57[(1 +O ([ O+ APu@ P A7 @O ]2+ 0) 0 | 470 P

=@A—a -+ (lu" @O+ 4" u@) [P} 4" ) |)
+2(1 42y (Au(®), W' () (| A7 ()| —2(Au (@), ' (¢)))

and
A4y =llw" P+ A u@) P 47 @) [F]+2 I: (4[| 4 (7) |Pd
") P+ AP A4, P-4 [ (L2 a7 (2) P

A sup{(1+ ) AU [ (Lo A @)
+2[sup{(1 +2)' | A () 1 sup{(1 4+ )"~ 4/ () )

X [ e @) e 4 sup{(1 47 AP )
xsup{(1 -+~ | A @[ (1+0)-+-erde)
X (L (1)~ [| A7) nzdf)m
<Cot ce,w(j: (140~ A" (2) ||2df)”2

which gives (2.8), (2.9).
Finally we show (2.6). In fact, by the Cauchy-Schwarz inequality

| Aullt= (0 25 85n) < (X0 25872) (1 A387m) = A u || 47l
and hence, by (6.9) and (3.17),
I+ Au@ <A+ )2 | Au@) - | 47 u(@) [F L Cop-
Thus the proof of Theorem 4 is completed. Q.E.D.

§7. Periodic solution.

In this section we seek the w-periodic solution u(¢) to the equation

(7.1) W)+ | Au(t) P Au(t) + A ()=F(1)  in H
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where f : (— o0, c0)—H is an w-periodic function. When X is a Banach space with
norm ||-||y, L?(w; X) means the space of functions f(¢) € X for each t € (— oo, o0)

and periodic, with period w, such that Jm If(#)|[% dt<< oo, equipped with norm
0

o 1/p
o= ([[ 15O )™ for 1<p<co.
In the case p= oo, the norm should be
LS e o5 20 =88 sup || f(2) |-
0<t<o

Then our theorem is stated as follow.

Theorem 5. The conditions (H1) and (H2) are assumed. If fe L*(w; H)N
L¥w; D(A)), then there exists an w-periodic solution u(t) to (7.1) satisfying

ue Cw; D(4)) and o' e L*(w; H).

Proof. We employ Galerkin’s method combined with the fixed point theorem.
Leray-Schauder’s degree theorem yields that for each constant s, 0<e<(1, there
exists a solution

um,e(t)_ _Zlgjm,s(t)wj invm
=
of the ordinary differential system

(1.2) (i, (D) +eduy, () +|| Aty ) [P Aty () + Aur, (1), W)= (f(), W)
for any we V'™

with periodic conditions
(7.3) Un, ()=, (t+0),  y (O)=u, (t+).

(For the details see Clement [4], Kakita [13]).

We require a priori estimates to u,, . independent of m and ¢, and briefly denote
Uy, . by u, without confusions.

Putting w=2u,, in (7.2) we have

d
dt

=2(f(), uin(t))sil; LSO+ 1147, (2) P

(Hufn(t) P+ el 4" u (1) H“r% || A" *u,(2) H“) + 2[4, (1) 1
(7.4

and
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7.5) [ 1@< [ 1r@rar=c,

by integration of (7.4) over [t,f+®] and (7.3), where we denote —f for

simplicity. (In this section several constants C and C; are independent of t, m and
e) If we put w=u,, in (7.2), then we have

%(uin(t), Un(0)) =[O+ el A un (O |+ A s (1) |

1 12 2_
t+5 r||A/ un (D =(f(1), un(1))

and

L | A, (z) |t e < c3/12+“

E(I 1A%, (2) H‘*dz‘)m

and hence
(7.6) j |4, (2) [*de < C.

By virtue of (7.5) and (7.6) there exists £, € [0, w] such that
lun@), 1A un(t) [ <C

from which and (7.4) it follows that, for ¢ € [7,, t,+ w],
t
() P+ ) A PO+ [ A O [+ [ | A @) P
/ 2 1 2 ¢
[ +-el| A1) -4 um(muw% j £ () [Pd-,
1 Vo

that is,
1.7 [unM<C and |4, ()|F<C,.

Taking w= Au,, in (7.2) and integrating it over [¢, -+ w], we have

eIlz‘lum(l‘)IIZ+Ilzﬁl“zmn(t)l\zHAum(t)llz-l-ii{lAum(t)!l2
(7.8)
= (A" (1), A up())+| A () [P — (A”2 w(®)s A u,(t))

and
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@9 | 145u@ | An@[Fde< [ 470 e+ | (@216, £ru@)de<C
by (7.5) and (7.6). Putting w=2A4u], in (7.2) we have

%(nAlﬂu@(r)|12+enAum(r)HZ)+2|1Au:n(t)n2
— 2(f(F), AUl (1)) — 2| A, (0) [ (A (1), A1)
snAmf(t)|F+|{A‘/2u;,,(r)nz+||A“2um(r)HZ(anum(t)|12+Ci||Au:n<t)nz)

and

d 1/2,,7 9 9 , .
(7.10) o (AOF+ell Aun () )+ A (8|
<[ V() P+ AP (0 [P+ Co | A (8P| At (2) P

Then, integrating (7.10) over [7, t+ ] and using (7.7), (7.9), we have
(.11) f | Au(2) fde < C

which implies || Au;,(¢,)|| << C for some 1, € [0, w]. Integrating (7.10) from 7, to ¢, t e
[t,, t,+w], we obtain

(7.12) | A un (1) [ < C.
Putting w= A%4,, in (7.2) and integrating it over [z, 1+ w], we get

e [ 1A @) e 147000 P 47702 Pl

7.13
o < [1ar@de+ - [ | an@lfde+ [ | aw,@)lde.

By virtue of the Cauchy-Schwarz inequality it holds
(| Aty | < || A s ||| Ay .

Hence
n 1 9 1/—(17 4 172 ’ 2
[ lun@ide< 2 [ 4@ rde+ 2 ([ [ ana@irde) "+ [ i) pde
and

(7.14) f | Aun(0) |[fde < C.
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It also follows from (7.13) that
@15 [ el @ et | |4 @ I 4 @) <.

From (7.14) there exists ¢, € [0, @] such that || Au, (2,)||<C. If we consider (7.8) as
the first order differential equation in || Aw,,(¢)|* with the initial value || Au,(2) | at
t=t,, then we have for ¢, 1,<t<f,+ o,

| At (0) o= €= P O At (1)~ 2 APl (1), A1 (1))
+ 2 (1), AP (O)426T0 [ erof A
— 24y (5), APt (]| A7) - (APF(2), AP ()}

13
where P(t)=2.[ (e+||4*u,(z)|D)dz. The estimates obtained above gives
12

(7.16) | Au, ()| <C.

Next, if we replace w=2A4%, in (7.2), then we have

d d ¢ 3/2 2 32,/ 2
(7.17) (Tt(HAum(t)“ + ]| AU, (1) [P+ 21| AUl (1)
=2(Af(1), Au:n(t))__znAl/zum(t)Hz(As/zum(t)’ A (1)

and
2[ 14 @) e <, [ 14 0@ P42 (0) Pl [ (AT P+ A(e) P
By (7.15)
[ 1ami@ar<c

which means with (7.15) that there is some ¢, &[0, w] such that e 4*%u,(t,) ||+
|| A%l (2;)|| < C. Then, integrating (7.17) over [t,, t], ¢ € [£,, ,+w], We have
(7.18) [| Aun () < C.
Finally putting w=1,, in (7.2) then we have
(7.19) lu(DI<C

since fe L~ (w; H).
We now pass u,, . to the limit. From (7.7), (7.12), (7.16), (7.18) and (7.19) we
may extract a subsequence {u, ;} of {u,, .} such that for some u and X
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u, ; —> u in L=(w; D(A)) weakly*
., —> ' in L*(w; D(A)) weakly*

u)s —> " in L*(w; H) weakly*
and
| A2, () |FAu, ; —> X in L™(w; H) weakly*

as y—oo and 6—0. X=|4"%u(-)|F4u is shown by the compact method as in the
proof of Theorem 1. Hence this u is the solution to (7.1).
Thus the proof is completed Q.E.D.

We shall state the regularity theorem without proof.

Theorem 6. In addition to the assumptions in Theorem 5, f’ ¢ L= (w; H) is as-
sumed. Then the solution u(t) satisfies

ue Cl(w; D(A)N C¥w; D(A')).
Moreover, if we assume 9 € L>(w; D(AY)), j, k=0, 1,2, - - -, then we have

ue C*(w; D(AY)), K=0,1,2, ---.
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