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1. Introduction

C. Defermos [2] studied the classical linear thermoelastic system for in-
homogeneous anisotropic materials and proved that there exists only one solu-
tion which is differentiable and asymptotically stable as t - +o00. Dassios and
Grillakis [3] studied the decay of energy for an isotropic model in R3, and
for which the authors divided into three parts, kinetic energy, strain energy
and thermal energy. They concluded that whenever the initial data are smooth
with compact support, then the three parts of the energy decay to zero as
t > oo at the rate ~™*¥%), for a suitable positive number m which depends
on the initial data. Recently D. Henry, O. Lopes and A. Perisinotto [4], (see
also [5]), showed that the three parts of the energy decay exponentially to
zero in the unidimensional case but not for n > 1. The authors proved the
asymptotic behaviour studing the essencial spectrum of the semigroup asso-
ciated to the thermoelastic system. In special situations, that is, when the
restoring force is proportional to the vector velocity of the displacement field
D. Carvalho and G. P. Menzala [8] proved that in a bounded, isotropic and
inhomogeneous medium the kinetic energy, the strain energy and the thermal
energy approach exponentially to zero as t — +o0,

In this paper we study the one dimensional linear thermoelastic system
and present a new proof, much elementary than the one given in [4]. We
use basically the energy method, regularity results and some technical ideas
to show that the total energy decays exponentially as t— 4+co. The one
dimensional linear thermoelastic system is given by

(1.1 Uy — Uy, + 00, =0, O0<x<L, O0<t<T,

(1.2) 6,— 0., + Pu,=0, O<x<L, O0<t<T,

with initial conditions

(1.3)  u(x, 0) = uy(x), u,(x, 0) = uy(x), 0(x, 0) = 6,(x) in J0, L[
and boundary conditions

(1.4 u©,t)=u(L,ty=0(0,)=0(L,t) =0 vVie]0, T
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In (1.1) and (1.2) « and f are constants. The existence, uniqueness and regular-
ity of the solution of the above system is well known by now and was due
to the pioneer work of C. Dafermos [2]. We sketch the proof just for matter
cf completeness. In section 3 we will prove that the energy of this system
decay to zero at the rate e ” for a suitable positive constant y as t — +oo.
Our notations are standard and follow the terminology given in the book of
J. L. Lions [6].

2. Existence, uniqueness and regularity

Let’s denote by A the operator of L?(Q2) defined by Aw = —w,,, with
domain

D(4) = H(Q)N HX(Q)

where @ =10, L[. It’s well known that A is a positive self adjoint operator
in the Hilbert space L*(£2). Let’s denote by B the operator defined by Bw =w,,
with domain D(B) = H}(£2). We denote by # the space # = H}(Q) x
L*(Q) x L*(Q), with norm

L L L
VI3 =j uf‘dx+J‘ vzdx+J %dx ,

0 0 0

where V = (u, v, ). Let’s define the operator o : D(f) = H# — H

0 -1 0
d=—|A 0 aB
0 BB 4

with domain:
D(s/) = H Q)N H*(2) x HL(Q) x HL(Q)NH*(Q)
Let .o/ as above, then we have

Theorem 2.1. (Existence and uniqueness) Let (ug, uy, 0,) € D(#) and
T >0, then for any a, f € R, there exist only one strong solution of system
(1.1), ..., (1.4) satisfying

ue C(0, T; D(A))N C*(0, T; H3(R))N C*(0, T; L*(2))
0 e CO, T; D(A))NCLO, T; LX(Q))
Proof. System (1.1), ..., (1.4) is equivalent to

d
ZU=aU, UO=U,, UeD)
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where
u Ug
U= |u |, Up= | uy
6 0o

It is sufficient to prove that . is the infinitesimal generator of a strongly
continuous semigroup. In order to show this, let’s define the operator # =
—(o — B)*1 + of, with D(%#) = D(s/), where I denotes the identity operator in
. First of all, note that # is dissipative, in fact, set V = (u, v, 0), then we
have

L

(AV, V) =(@—B) JL 06, dx — j 02dx

0

<1(oc—/3)2 vadx— 1 L92dx
<La—prvin -1 e
= 2 # z . ' X
Consequently
1 2 2 1 t 2
21) (BV,V)w < —5(06—/3) ||V||x—§ 05 dx
0]

Our next goal is to prove that Im[(I — #] = #. That is, for all (F,, F,, F;) e
H#, there exist V = (u, v, 0) € D(/) = D(I — %) satisfying

2.2) uu—v=F,
(2.3) o —u,, +o00,=F,
(24) :ue - Gxx + ﬁux = F3

where pu =1+ (x+ B)>. In fact, let’s denote by w,, w,, ..., w, and by 4,
Az ovey A, the first m eigenfunctions and eigenvalues of the operator A respec-
tively. Set V, to be the finite dimensional space generated by the first m
eigenfunctions, and put ¥, =V, x V,, x V,,. Then, the approximated problem
is given by:

(2.5) (=B W)y =F, W)y, Jj=1 ..., 3m

where

3m
U™ = @™,y gmy  F=(F,F,,F;f and U™=Y ¢ W
i=1
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and {W; i=1,...,3m} is a basis of ¥,,. By (2.1) we have that the matrix
(LI — #1W,, W) ¢)3mx3m is positive definite, thus system (2.5) has only one
solution. Multiplying by ¢; ,, and adding up in k we have that:

(LI — #BIU™, U™) o = (F, U™) .

From (2.1) and the last relation we conclude that there exist a positive constant
C such that:

(2.6) IU™| 4 < CIF] »
L

2.7 J 0]2dx < C||F|%
0

Denoting by

m m m
u(m) = Z ai,mwi s U(m) = z bi,mwi s H(M) = Z ci,mwi
i=1 i=1 i

we conclude that system (2.5) is equivalent to

L L L
(2.8) U f u™wdx — f v™wdx = J Fywdx
0 0 0
L L L L
(2.9) U L v™wdx + L uwdx + o L 0Pwdx = L Fyw,dx

L L L L
(2.10) ,uj 0™w,dx + j 0wdx + p j vMwdx = J‘O Fyw;dx

0 ] 0

for j=1, ..., m. Let’s multiply equation (2.8), (2.9) and (2.10) by —b;4;, a;4;
and c;4; respectively and add up in j, to obtain

L L L
(2.11) —u f uvMdx + J o™ 2dx = —J (Fy),o™dx
0 0 0
L L L L
(212) j v™udx + j |uf|?dx + o f 0Pudx = f FuMdx
0 0 0 0

L L

L
|02 dx + ﬁj MM dx = j F,0(mdx
0

0

L
(2.13) ”f HmOm gx. 4+ j
0

0

From (2.6) and (2.11) we conclude that there exists a positive constant C such
that

L
(2.14) J 1b™|2dx < C||F||2 .
0
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From (2.7), (2.12), (2.13) and (2.14) we conclude that there exists a positive
constant C satisfying

L L
(2.15) J |ul™|2dx +J |0%12dx < C|IF|% .

0 0

From (2.15) it follows that there exist a subsequence of (4™),,. » and (0™),.c ns
(which we still denote in the same way) such that

u™ >y weakly in D(A)
0™ -0  weakly in D(A)

From (2.8), ..., (2.10) and the above two convergences we conclude that u, v

and 6 satisfy
L L L
uf uwjdx——J ow;dx =j Fywdx
0 0 0

L L L L
U J ow;dx + J Uy Widx + o J O .widx = J Fyw;dx
0 0

0 0

L L L L
,uf Ow;dx + f 0. widx + ﬁJ v wdx = j Fyw;dx

0 0 0 0

for all j. Since finite linear combinations of the eigenfunctions are dense
in L2(2), we conclude that u, v and 0 satisfy (2.2), (2.3) and (2.4), that is
D(I — %)= #. Finally since D(#) is dense in #, from Lummer-Phillips’s
theorem we conclude that 4 is the infinitesimal generator of a strongly continu-
ous semigroup, so is o, hence the result follows O

Remark 2.1. If we define D(«/?) and D(</3) as:
D(«?*) = {Ve D), AVeDA)},
D(s/?) = {V e D(4?*); AV e D(£?)},
then it is easy to see that whenever U, = (ug, uy, 6,) € D(o/3), we have
U = (u, u,, 8Y € C*(0, T; D(+))
or, in particular
ue C¥0, T; D(H)(Q)), 0 e C*(0, T; D(A4)).
Remark 22. D(o/3) is dense in #. In fact, take F € # such that
(2.16) (F,v) =0 Vv e D().

Since .o/ is the infinitesimal generator of a strongly continuous semigroup,
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there exist U € #, such that (x — )*U — o/U = F, taking V = U in (2.16) we
conclude that U =0, that is F =0. With the same reasoning we can prove
that D(=/?) is dense in D(s/), and D(«/3) is dense in D(=/2), with the corre-
sponding graph norm. From here our claim follows (]

3. Asymptotic behaviour
Before we prove the main result of this paper let’s recall the simple lemma

Lemma 3.1. Let v (= v(x, t)) be the solution of the inhomogeneous scalar
wave equation

3.1 Uy — Uy = (X, 1) for 0<x<L, 0<t<T,
v(x, 0) = vy(x), v,(x, 0) = v,(x) for 0<x<L,
00, )=v(L, =0 for 0<t<T,

where vy, vy and f belong to Hy(2)N H*(Q), HY(Q) and H*(0, T; L*(Q)) respec-
tively. Then, the identity

1 d [t L
ZL[U,ZC(L, )+ v30,0)] = 7 L <x - 5) v,(x, D (x, t)dx

+ 1 f : [v2(x, 1) + v3(x, )]dx
2Jo

L L
- j <x — —)f(x, v, (x, t)dx
0 2
Proof. Mutltiply (3.1) by (x — (L/2))v, and integrate in x to obtain

(3.2) j: <x - %) v, dx — LL (x — g) Uy Uydx = LL <x — %) Jodx .

Since v,(0, t) = v,(L, t) = 0, direct calculation give us the identities

L L d (* L L L
(3.3) L (x — 5) VU dx = r 1 <x - 5) v, 0, dx — L <x - 5) V0, dx
d [t L L[t L\, ,
=7 1 (x - 5) v, 0, dx — 3 fo <x - 5)(1), ),.dx

d (L L 1 L
=ado <x—2>v,vxdx+§J‘0 vZdx .

holds.
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On the other hand,

(4 KG_gwmmgﬂ@—Q@Mx

1 1
= ZLIvAL, ) + 030,01 — 5 | vidx.
4 2)o

From (3.2), (3.3) and (3.4) the result follows O

Let’s define the following auxiliary functions:

1 (E o
E,t) = EJ |:u,2(x, 0+ ui(x, 1) + BHZ(X, t):| dx ,

0
E,(1) = % J: [ué(x, 1)+ ul(x, 1) + %th(x, t)] dx ,

d
B

Theorem 3.1. Let (uy, u,, 0,) € D(<f) and aff > 0. Then there exist positive
constants C and y such that the solution of system (1.1), ..., (1.4) satisfies

E;(t) = % J‘L |:u,2“(x, 1) + uZ(x, t) + = 63(x, t):| dx .

0o

E () + E,(t) + Es(t) < Ce™™.

Proof. Let’s take (uq, uy, 8,) in D(o/3). Multiply equations (1.1) and (1.2)
by u, and 6 respectively, then we have

L L
65 29 )+ w2 9]dx = —a | 6.0, Dux, ddx,
2 dt 0 (4]
1 d L L L
36 2| 0xx ax+ | 02 0dx = —B | 6(x, uy(x, )dx.
2dt Jo 0 0

From (3.6) it follows that

J: 0.(x, Hu,(x, t)dx = % {% % J: 0*(x, t)ydx + J: 02 (x, t)dx}

and the substitution of this identity in (3.5) implies that

(3.7) 4= -2 62, ax

' a7 B T
Next we find the derivative of E,. Differenciate equations (1.1) and (1.2) with
respect to ¢ (this is possible from Remark 2.1), multiply by u,, and 6, respectively
and apply a similar idea as above to obtain
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d N
(3.8) EEEZ(t) = ~3 02 (x, t)ydx .
(o]
Let’s multiply equations (1.1) and (1.2) by u,,, and 8., respectively to obtain
1d (v 2 L
3 a0 fuZ(x, 1) + w2 (x, D}dx = —a | 0.(X, ey, D)dx
0

0

= _agx(xa t)utx(xr t)]:z%

L
+a f 0,..(x, Du(x, t)dx

0
1d L L L
—— | Oix,tdx + | 0Z(x,t)dx = —B | 0..(x, Du,(x, t)dx.
2dt Jo Jo 0
The above two identities imply that
d o [* 2 =L
(3.9) —Ej() = — | O5(x, )dx — ab,(x, u(x, )35 -
dt BJo

On the other hand, for any ¢ > 0 and any pair of numbers we have +ab <
a’/e + eb?/4, therefore

B10) 0,05 uls, O1TE < [62(L, 6 + 620, 0] + L[, ) + 4200, )]

< Zsup{O2( 05 € € 2) + S [dL, ) + 1200, 1.

From Gagliardo-Nirenberg’s inequality (see Adams [1]) we know that there
exists a positive constant ¢ satisfying:

(3.11)

_ L 1/2 L 1/2
sup(02{&, 1), Ee Q) <c {.[ 0% (x, t)dx} { f 03 (x, tydx + f 02 (x, t)dx}
(1] 0 0

A2 [r & (L
< I:c + <—> ] j 02(x, tydx + — f 0%.(x, t)dx .
é 0 4 Jo

From (3.9), (3.10) and (3.11) we obtain

L

(3.12) %Es(t) - —<% - oc%) J OL 02.(x, t)dx

L

FALE(L, 0 + 120,91 + CE) J 02(x, Odx,
0
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where C(g) is a constant approaching +oo when ¢ - 0. On the other hand,
let’s differentiate equation (1.1) respect to ¢t and set v =u, and f= —af

Xt
Since (ug, 4;, 0,) € D(/3) we conclude that v(0)=u, € H3(2)NH?*(Q) and v,(0) =
Ugvx — Oo.x € H5(Q). From Remark 2.1 it follows that f € C*(0, T; H*()), and
from Lemma 3.1 we have that the following identity is valid:

(3.13) %L{ufn(L, 1) + u3(0, )} = % LL <x - %) gy (X, Dth (X, D)dx

1 L
+5 J {uﬁ,(x, £) + ul(x, t)} dx

0

L L
+a f <x — 2> 0., (x, Hu,(x, t)dx .
0

Let’s define the auxiliary functions:

0

H(t) = —JL <x — %) Uy (x, Hu,,(x, Hdx ,

I(t) = JL B(x, Hu,,(x, t)dx ,

0

J(t) = f - (X, Duy(x, )dx .

]
Clearly
(3.14) |H(@®)| < % r [uZo(x, £) + ui(x, ©) + 2202 (x, t)]dx,
V]

(3.15) (@) < % r [0F(x, 1) + u?(x, H)]dx,

1 L
(3.16) [J(1)] < EJ [uZ(x, t) + u2(x, )]dx .

0

From (3.12), (3.13) and the definition of H we obtain

e+l H(t)} < —(3 - oc8> JL 62,(x, dx + C(e) f * 02x, 1y
7 3 L ﬁ 2 o xx 0 x

oe

L e (L L
oL L [u2,(x, ) + uZ(x, )]dx + oczz L <x — 5) 0,,(x, u(x, H)dx .

From (1.1) and the above inequality it follows that there exists a positive
constant ¢ which does not depend of ¢, such that:
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d
CRU R {E3(t) + %H(t)}

L L
< -(% _ a§> j 02 (x, D)dx + [C(s) " MEL] L 02(x, 1dx

L
+ ce J [u2(x, £) + u2(x, £) + uk(x, 1) + 6Z(x, 1)1dx .
0

Let’s differentiate I(t) and J(¢) and use (1.1) and (1.2) to obtain

L

%I(t) = JL 0, (x, Duy(x, )dx — B j uZ,(x, t)dx

0 0

L L
— J‘ 0.(x, Hu,.(x, ydx + « J 02(x, t)dx ,
0

0

d L L L
770 = J uZ(x, t)dx — J uZ,(x, )dx + ocj 0,0x, )uey(x, )dx
0

0 0

from where it follows that

(3.18) dI(t)<—lﬂJLu2(x t)dx+l Lez( t)dx
: @ 0= k) v 2B Jo =

+ EfL 2 (x, ydx + <o¢ + §) Jw 0% (x, t)dx
16 xx £ ﬂ o x b4 >

2

d Ly 1k, «
(3.19) —J)< | ui(x, t)dx — = | ui(x, t)dx + —

L
02 .
3 L 2 (x, t)dx

From (3.18) and (3.19) we deduce

d {I(t) + ﬁJ(t)} < 21[3 JL 02.(x, ) g j ) u(x, H)dx

ﬁ L
J xx(xa t)dx + (d + -+ —> j Of(x, t)dx .
" 16 .

From (3.17) and the last inequality we have

d {E O)+a H(t)+ 32 . [I(t) +F J(t):I} <°‘ - oc —4 2> r 02 (x, t)d
dt 3 ﬂ ﬁ £y SC/B 0 xx(x9 t) X

—ce j [uazct(xa t) + uazcx(xa t)]dx
0

+ C(e) JL [63(x, t) + 02(x, t)]dx .
0
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Let K the following function

K() = %H(t) + %cl(z) + 8cJ ().

Taking ¢ > 0 such that &((«/2) + 4c/B%) < a/B, we obtain

%{E3(t) +eK(®)} < —ce jL [u2(x, ) + u2.(x, t)]dx

+ C(e) fL [02(x, ) + 6%(x, t)]dx .
0

From (3.7), (3.9) and the last inequality we have
B

(3.20) d {E3(t) + K@) + -

% [Cle) + cs1[E,(0) + Ez(zn}

L
< —ce J [uZ(x, ) + ufo(x, ) + 02(x, 1) + O2(x, t)]dx,
0
where ¢ denotes various positive constants independent of & From (3.14),
(3.15) and (3.16) we have that there exists a positive constant, say ¢, such that:

(3.21) E;(t)+ eK(t) + C(e)[E () + E,(8)]
<¢ f " [02:(x, £) + u2(x, ) + uZe(x, 1) + O2(x, t) + O2(x, H)]dx,
0

where C(e) denote various positive constants. Multiplying (3.20) by ¢, and
(3.21) by c;, adding the resulting inequalities and integrating, we conclude that
there exists a positive constant y, such that

E5(t) + eK(t) + C(e)[E;(t) + E,(1)] < C(9) {E1(0) + E,(0) + E;(0)}e .
Taking 0 < ¢ small enough we have that
E;(t) + eK(t) + C(e) [E,(t) + E,(t)] = E;(t) + E,(2) + E;(0)
From the last two inequalities we obtain:
E (t) + E;(t) + E;(t) < C(e){E1(0) + E,(0) + E5(0)}e™™

for all +>0. Finally from Remark 2.2 the result follows. O
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