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§1. Introduction

This paper is concerned with a local energy decay property of solutions
to the initial boundary value problem of the dissipative wave equation:

Uy +u,—Au=0 inQandt>0,
(D) u=0 onlandt >0,

u(0, x) = uy(x), ©,(0, x) = u,(x) inQ,
where Q is an exterior domain in an n-dimensional Euclidean space R", whose
boundary I" is a C® and compact hypersurface. Below, r, >0 is a fixed
constant such that Q° < B, = {x € R"||x| <r,} (€° is the complement of £).

In the case of usual wave equation, the local energy decays exponentially
fast if n is odd and polynomially fast if n is even at least under the condition
that @ is nontrapping (cf. [9], [10], [11], [16]). This is reasonable from a
physical point of view because the energy propagates along the wave fronts,
so that the motion stops after time passes unless the wave front is trapped
in a bounded set.

In the case of dissipative wave equation, the energy propagates again
along the wave front. But, the trapped energy also decreases by virtue of
the dissipative term u,, so that we can expect to get a local energy decay
result without any geometrical condition on Q. In fact, Shibata [14] proved
the following theorem.

Theorem 1.1. Assume that n > 3. Let R > r, and let u(t, x) be a smooth
solution of (D) such that supp u(0, x), supp 4,0, x) = Qp = {x € Q||x| < R}.
Then, there exists a constant C >0 depending on n and R such that

j {|u,(t, )+ Y, |0%u(, x)|2}dx
Qg

<1
<Cl+ t)_”{ Y J [02u,(0, x)|%dx + Y, |02u(0, x)lzdx} ,
<3 Jo lel<4 J @
where 03v = 0lp/o3t -+ 0%, a = (ay, ..., %,) and o] =y + -+ + a,
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The purpose of this paper is to extend and improve the above result as
follows.

Theorem 1.2. Assume that n>2. Let R>r, and u,e H} x(Q) and
u, € L%(Q), where

L3(Q) = {f e L(Q)|supp f = g},
H; z(Q) = {f e H'(Q)Isupp f = Qp, f =0 on I'}.

Let u(t, x) be a weak solution of (D). Then, there exists a constant C depending
on n and R such that

j {qu(t, x)I? + 21 | Oxult, x)lz} dx

lal<

<C(l+ t)_”{f luy (x)|%dx + Y. J |6§u0(x)|2dx} )
Q Q

jaj<1

Compared with Theorem 1.1, our result removes the smoothness assump-
tion on solutions of (D) and includes the case n = 2 as well as the case n > 3.

For the Cauchy problem of the dissipative wave equation (ie. 2 = R"),
A. Matsumura [8] studied the decay rate of solutions. His argument was
based on the concrete representation of solutions by use of the Fourier trans-
form. When £ is bounded it is well-known that the energy of solutions decays
exponentially fast. Indeed, this fact is easily proved by a standard energy
method combined with Poincaré’s inequality. Since Q is unbounded in our
case, we cannot use Poincaré’s inequality. And also, because of the boundary,
we cannot use the Fourier transform. Our method is based on a spectral
analysis to the corresponding stationary problem with parameter A:

A+i—MDu=f inQ and u=0 on I.
This paper is organized as follows. In §2, we introduce the space Hp(€2)
as the completion of CF(Q) with respect to Dirichiet norm and give several

0o 1
properties of the space Hp(Q). In §3, we shall prove that A = I: y 1:| gener-

ates a C, semigroup on H,(2) x L?(Q). In §4, we formulate the problem in
the abstract manner and prove Theorem 1.2 under a suitable assumption on
the behavior of (1 — A)™* near A=0. In §5, we investigate the behavior of
(A — A)™! near A =0 and complete the proof.

§2. The properties of H,(2)

For any open set @ = R", CJ(0) denotes the space of all C* functions
on R" whose support is compact and lies in @ (in particular, such functions
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vanish near the boundary of (¢), L*(0) a usual L? space on ¢ with norm
[llo and inner product ( , )s, and H*(¢) a usual Sobolev space of order s

on O with norm ||-[|; o. ||l o Will be denoted simply by |-|,. Likewise for
-l and (, )q. Let us define the space Hp(£2) by
ou ou
= L Fu=|-—,...,— 2(Q =
Hp(2) {ueH,oc(.Q)| u <8x1’ ’6x,,>EL( Y, u=0 on I,

Ja sequence {u,} = CF(Q) s.t. [|[F(u, —u)) =0 as n— oo} ,

where Hj,(2) = {ue 2'(Q)lue H () VR >r,}. As we mentioned in §1,
Hp(Q) will play an important role since 4 will be dissipative in this space.
Although H,(©2) coincides with the completion of CF(£2) with respect to |V ||
we prefer to adopt the above definition to make some properties clearer.

Lemma 2.1. (1) For any R >r,, there exists a constant C = C(R) such
that

(2.1) lollo,0p < ClV@llo,0, Vo e CF(Q).

Here and heredfter, the letter C is used to denote various constants and
C(A, B, ...) denotes a constant depending on A, B, ... in the parenthesis.
(2) There exists a constant C such that

2
22) f ) ";’g))z' dx<CIFol>  VoeCoQ),
where
_ |x| lf n> 3 5
alx) = {|x| log Blx]) if n=2

and B is a constant such that B|x| > 2 as x € Q.

Proof. (2.1) is well-known and the proof is omitted. (2.2) is also well-
known (cf. [6], [12], [15, Lemma 1.3]). For the completeness, however, we
shall give a proof for the case n=2. We fix R>r,. Noting that

Jl ok lp(x)I*(log (B|x[)|x[)~?dx = f

l]=1

fw o(rw)*(log (Br)) 2r ‘drdw

R

and

J ’ ¢(rw)*(log (Br))~*r~'dr = p(Rw)*(log (BR))™*

R

+2 fw o(rw)o - Ve(rw)(log (Br)) tdr,

R



548 Wakako DaN and Yoshihiro SHIBATA

we have

jl | |@(x)|*(log B|x|)|x|)"%dx < C(R) |p(Rw)*de
x|>R

loj=1

12 1/2
+2<£| R|</>(>€)I2(10g (BIXI)IXI)_de> <J|| R|l7</>(>€)lzdx> -

To calculate the first term of the right-hand side, we take a function p(x) e
C3(R") such that p(w)=1 for any |w| < R and supp p < B,z. From

fee]

ooy = - [ " 2 totroraaniar,

R

it follows that

0 o0

lpGro)l|lV o(ro)l|p(ro)|rdr + % L lp(reo)|? |V p(reo) | rdr .

oo < |

R

Applying (2.1), we have

1/2
_[H:l!(p(Rw)Izdws%qH R|¢(x)|2|p(X)|dx) (fu |V<P(x)|ZIP(X)|dx>

+%<ﬁmRmuwwmmmﬂ
< CR) 9|2 a, < CRI7ol.

1/2

Therefore we have proved that

lp(x)?
2.3) LIZR P dx < CR)|Fol*.

On the other hand, since there exists a constant Cg >0 such that d(x) > Cg
in Qg, from (2.1) we have

lp(x)I? 1 2 2
(2.9) J;lk Ay dx < C_ﬁ JL)R le(x)|*dx < C(R)||Fo|*.

(2.3) and (2.4) imply (2.2). O
From the definition of Hy(£2) we have immediately the following.

Lemma 2.2. Let {v,} = C3(Q) be a sequence such that |V (v, — v,)| =0
as n, m—oo. Then there exists a ve Hp(Q) such that |V(v,—v)| >0 as
n— 0.

From Lemma 2.1 we have:
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Lemma 2.3. If ue Hp(Q), then u satisfies the following inequalities:

(2.5) lullo, o, < CR) IV ullo, o, »
|u(x)I? 2
(2.6) aegr X =il

Moreover, Hp(Q2) is a Hilbert space equipped with an inner product (u,v), =
(Vu, Pv).

§3. A construction of C, semigroup solving (D)

Putting u, = v, we rewrite the problem (D) in the following form:

A HE R

An underlying space for 4 is

H = {[ | lue Hy(@),ve LZ(Q)} :

From Lemma 2.3 we know that # is a Hilbert space equipped with the

inner product
(D, s
The domain of 4 is

D(4) = {[ﬂ e #|A [2’] e x} - {[ﬂ € #|ve Hp(®), du e LZ(Q)} .

For any open subset @ we put

C3(0) = {[’; ] f and ge czf(@)} .

In order to prove that A generates a C° semigroup on 4 it is sufficient, in
view of the Lumer and Phillips theorem [13, Chapter 1, Theorem 4.3], to
prove the following proposition.

Proposition 3.1. (1) A is a closed operator.
(2) A is a dissipative operator.

3 2AI-— A)=H.

4) D(A) is dense in .
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Proof. To prove (1), let us assume that D(A)a[Z"}—»[ﬂ in # and

n

A[u"}—»[;] in # Then we have v,—»v and Fv,— Vf in L*(Q), which

Un
implies that Vv = FVf and v, > v in H'(2). Since v=f =0 on I" we see v = f
and v e Hp(Q)NL*(Q). Since du,—g + v in L*(Q) and Au, > du in &', du =
g +v in L*(Q), which implies that A4 is closed. To prove (2) we calculate

<A|:u:|,[u]> =<[ v :Hi:;]) . Since Vu, Au, v and Fve L*(Q) and
v v #» Adu—v vl #»

v=0on T,

(4u, v} = lim J prduvdx
Q

R-w

R- o0 R—-o0

= — lim J Vpg-Vuvdx — lim J prVu-Vvdx = —(Vu, Vv),
Q Q

where p(x) € CT(R") such that p(x) =1 if |x| <1 and =0 if |x| > 2 and pg(x) =
p(x/R). Therefore we have

3.1) Re (A [Z] [Z])M = b2 <0,

which implies that A4 is dissipative. Moreover, it follows from (3.1) that

u u
oo Juaff =[]

(cf. [13, Chapter 1, Theorem 4.2]). We shall prove (3). Since CF(R) is dense
both in H,(2) and in L*(2), in view of (1) and (3.2) it is sufficient to prove

that for any [g] € C$° (L), there exists a [Z] € D(A) such that

(3.3) (I — A) [“} - [f ] .
v g

Substitute the relation: u — v = f of the first component into the second compo-
nent in (3.3), and the problem is reduced to finding a solution ue H*(Q) of
the equation:

for >0 and [Z] € D(A)

‘ H

2u—Adu=g +2f in 2 and u=0 on I.
Since it is well-known that {2u — Aulue H*(Q) and u =0 on I'} = L*(Q) (cf.
[12, Chapter 3]), there exists a B] € D(A) satisfying (3.3) for any [;] € C§°(Q).
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Last of all we shall prove (4). Assume that there exists a |:u] € # such that
v

<I:u:|, l:f:|> =0 for any |:f] € D(A). Since there exists a |:p:| € D(A4) such
v g1/ » g q
v

o-(e=ala b2~ IEIE - CLHED.

that (I — A)[”] = [ ]
q
p . u
Therefore, by (2) we have |:q] = 0, that is, |:u:| =0. O

The Lumer and Phillips theorem implies the following theorem:

Theorem 3.2. A generates a C° semigroup {T(t)} on H#.

Put the region D as follows:

D=DUD,,
where
D;={2eC2Re i+ 1>0,ImA#0} and D,={ieR|i>0}.

In view of the Lumer and Phillips theorem and [13, Chapter 1, Corollary
3.6] we know that

(34) p(4)>{leClReA>0} and [(AI — A < Eij for Re 1> 0.

Lemma 3.3. For A€ DNp(A) we have

o [ <o, oo
v > v » v

where C(A) is a constant depending on A continuously.

Proof. For Ae D;N p(A), let [::| € D(A) be a couple of functions satisfying

that

(3.6) (AL — A4) [ﬂ = B ] for B } e Co Q).

Then from (3.6) it follows that

3.7 AA+Du—Adu=g+ @A+ 1)f in 2 and u=0 on I'.
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Since u=A"'(v + f) e L*(Q) and Adue L*(Q) we can multiply (3.7) by 4u to
obtain

(3.8) {(Re A)* — (Im 4)*> + Re A} |Ful|® + || 4u|® + i2 Re A + 1) Im A||Fu||?
= —(g,du)+ (A + V(Vf, Vu).

Taking the imaginary part of (3.8), we have

|4+ 1/ 2
. u|? < V12 Aul .
69 17 S g s im 2" + Re T T 7191 14w
On the other hand by (3.8)
(3.10) I 4ul® < JAIA + UIPull® + (2 + U [Pul 1711 + lgll | dull .

Combining (3.9) and (3.10), we have

A+12 33114+ 1P |A+1
||Vu||2+||Au||2s{' : +5< A e

2 3/(3|A||A+1 2
a3 (A e,

where I =|2Re A + 1||Im A|. Since v = (1 + 1)"(g + 4u) and A € D,, it follows
that

lol* < 8(ll4ull® + ligll®) .
Therefore we obtain that
(3.11)
I7ull® + llo]* < C;AUPFI? + llgl?)  for 2e DN p(4) and [ﬂe ().

Here C,(4) is continuous in D, Since CZ(Q) is dense in both H,(Q) and
L*(®), (3.11) holds for any [f] e and e D;,Np(A). Combining the above
argument and (3.4) implies tge lemma. []

Lemma 3.4.

1) D < p(A).

2 ||(/II—A)_IIIS7+% if ReA=0 and ImA#0.

Proof. (1) Put E=DNp(A4). Since D is a connected set, it is sufficient
to prove that E is non-empty, open and closed. It is clear that E # ¢ and E
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is open. Our task is to prove that E is closed in D. Let {4,} < E such that
Js— A in D as n— co. By Lemma 3.3 there exists an M such that

S T

where p = A,(ne N) and 4. If we prove that AI — A is surjective, then (3.12)
implies immediately A € p(A4), that is, E is closed. Let us show that Al — A

is surjective. Since A, € p(A4), for any [ﬁ € H there exists a [u,,] € D(A) such

n

that (4,1 — A) [Z"] = l:;] If there exists a liﬂ e # such that

n

(3.13) [2‘] N [’Z] in #,

we can conclude that (AI — A4) is surjective, because A is closed operator.

n_i m m
Um g H ’

un _ um
Un vm
(2) We put A =ik, k#0 and (ikI — A) [Z] = |:£:| Then we have

(3.14) \

Observing that

SMu‘m_’{nl Slej“m_lnl
H

‘ H

as n, m — oo, which implies (3.13).

(3.15) ik||Vull* + (1 — ik)|v|? = (Pf, Vu) + (v, g) .

Taking the real part of (3.15) we have

(3.16) loll? < Igh® + 207 f 111 7u] .

Taking the imaginary part of (3.15) and considering (3.16) we have

1 1
17ull® < <3 +W> lgll* + 2<9 +W> Iwfiz,

which implies (2). O
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By the resolvent equation and (3.4) we have the following lemma.

Lemma 3.5. Put b(a) = a/2(2 + 7a). Then for any a >0 there exists an
M, > 0 such that

(3.17) A — A7 < M,
for €D, ym={4eCl|Re Al <b(a) and |Im A| > a} U{le C|Re A = b(a)}.

Proof. At first, we consider the case that A= u+ ik, |k| >a. When
A =ik, |k| >a>0, from (2) of Lemma 3.4, we have ||(ikI — A)7'| <7+ 2/a.
By the resolvent equation we obtain the estimate:

2
(e + i) — AT <7 + Rl <7 + %) (e + k)T — A7

Since b(a) = a/2(2 + 7a), then we have |(AI — A)7'|| < 2(7 + 2/a) for |u| < b(a)
and |k| > a. Moreover from (2) of Lemma 3.4 we have [[(Al — 4)7'| < 1/Re A
< 1/b(a) = 2(7 + 2/a) for Re A > b(a). Therefore if we put M, =2(7 + 2/a),
then (3.17) holds. O

§4. A proof of Theorem 1.2

In view of §3, we know the following fact.
(f1) Let a>0. Then, p(4) > D, 4, and sup{I(Al — A ||A€ D, 4u} <M, .
We know also that:

(f2) Let R>r, For any x € #; there exists a sequence {X;} < C5*(2g+1)
such that x; > x in # .
Here and hereafter we put #% = {[Z] € A |supp u, supp v < QR}. In fact,

since C(Q) is dense in J#, there exists a sequence {X;} < C°(2) such that
x; > x in . Below, ¢g(x) always refers to a function in C3(R") such that
pr(x) =11if |x] < Rand =0if x| > R + 1. Since pgx =X, from Lemma 2.3

lorX; — Xl 0 = llor(X; — X)l ¢ < C(R)[X; = X[l g =0 as j— 0,

which implies that {@gX;} satisfies the desired property.
Now we shall introduce some function spaces. Let E be a Banach space
with norm ||z, N >0 an integer and k=N + ¢ with 0 <o < 1. Put

@ = €*(R"; E) = {u e C*(R"\{0}; B)| Kuy,x < 0} ,

where
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@ne=3 [ (&Y w0
ayy a\¥
+ i\ig |h|~° J; KE) u(t + h) — (E) u(t)
N d J
@ns= % [ (Yo
d\¥ AN ayy
+ 2\;}3 |h| Jx (E) u(t + 2h) — 2(E> u(t + h) + (E) u(t)

i=

d 0 .

if 0 =1. Here, (;i-) = 1. Moreover, we put
T

dt
E

dt f0<o<l1,
E

dr
E

dr,
E

%oc = {[Z] |u € Hl(QR)a ve LZ(QR) VR = rO} ’
%omp =RU Hy

#(By, B,) denotes the set of all bounded linear operators from B; into B,
and Anal(I, B) the set of all B-valued analytic functions in I. In §5, we shall
show the following fact:

(f3) Put Q,={ieCj0<Rei<d,|ImAi| <d}. Then, there exist a d > 0 and

an R(1) € Anal(Qy; L(Homp» H#1oc)) such that:
(a) RA)x = — A 'x  for xe A, and i€Qy;

comp

(b) For any R >r, and p(s) € C3(R) such that p(s) =1 if |s| < d/2 and
= 0if |s| > d, there exists an M; > 0 depending on R, p and d such that

Ko()(@rR@ + )X, Y) o Dz, r < MalX| £ llyll
for any xe #3, ye # and 0 <a <d.

By using facts (f.1)—(f.3) we prove the following main result of this section,
which will imply Theorem 1.2.

Proposition 4.1. We have
(4.1) lorT@)x] » < C(L+ 072 (x[|
for x € #y, where C = C(R, M,, M,).

Before going to a proof of Proposition 4.1, we shall prepare some lemmas,
below. Since A is dissipative, T(t) is a C° semigroup of contractions, so that

(4.2) ITO <t Vve=0.
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By a lemma due to F. Huang in [5, §1, Lemma 1] (also see [7]), we have
the following lemma.

Lemma 4.2. For any o >0 and x € S, put
9(®) = (2 + io)] — A)7'x] .

Then g(w) e L>(R) and

(4.3) lim g(w) =0,
|w|—= 0
(44 J g(@)do < gllxllﬁf .

The following lemma is concerned with the properties of the Fourier
transformation of functions: belonging to %*, which was proved in [14, Part
1, Theorem 3.7].

Lemma 4.3. Let E be a Banach space with norm |-|g. Let N >0 be an
integer and o be a positive number < 1. Assume that fe € *°(R'; E). Put

1 oo
F(@) = I J fltyexp (/ — 1tt)dr .

Then,

IFOle < CA + L)Y K Dnto,r -

Proof of Proposition 4.1. Let o be a fixed positive number. In view of
(4.2), we have the following expression:

1 atio
(4.5) T(f)x = lim J eM(AI — A)"'xd)

a—iw

(cf. [12, p. 295] or [13, Chapter 1, Corollary 7.5]). Let us take a <d, x€
CP(Rp+1) and y e #. Note that x € D(4%)N #y4,. Then,

1 . @ .
(@rTOX,Y) ¥ = e II}m J e(aﬂs)t((PR((“ + i)l — A)_lxs Y) #ds

1 ©
= Ee"‘ J e='p(s)(@r((a + is)] — A)T'X, y) yds

+ e Tim f e*(1 — p(s)) (@a((@ + i) — A%, y) pds

T o~ J-o

=Ji() + (0.
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Now we consider the term J, (). (a) of (f.3) implies that p(s)((x+is)] —A) ' x=
p(s)R(x + is)x. From (b) of (£3) and Lemma 4.3 it follows that

(4.6) 1710 < e*CA + [t]) ™ Kp( ) (@rR @ + i)X, ¥) Doz, r
< e“CM (1 + [t ™ x|l ¥l -

Next we consider the term J,(t). Let us put J,(t) = (e*/2n) lim L,(¢). Using

lwl~ o

the identity (it) 'de’/ds = "' we have, by integration by parts

L, = [e”'(l — p(SN(@r((@ + i — A7T'X, ¥) T,

19

1

+(n)2[ {0 = p)onlle + i1 — A7 Y)%}jl

§=—w

11 1 —1 ’
b (u;z [e e (= ) (orl(a + i) = A7 y’”}]

( 1y
@y

Since we have, by (f.1)

| et = ponoutx + 91 — Ay )l

i
”%((a+is)I—A)_1 <JIMi(@+ i)l — A7 for [s|>a

it follows from (4.3) of Lemma 4.2 that

w
-0 as |w]— .

[ {1 = p()) gl + i) — A)7'x, y)%’}:l

S=—w

Let the last term of L,(t) be (—1) 'L (¢)/(it). Noting that Lemma 4.2 holds
for the adjoint operator, we have

Lyt <! J (1 = p)I((@ + i) — A7'x, (@ — is)] — A*) " pry) »|ds
d2<|sl<w
=1 1\ d’ G+
+ ) 75P O [@r(( + )T — A)TEx, y) o ds
=0 \J 2<lsl<o

=K1+K2.

If we take a < d/2 we obtain, by (f.1) and (44) of Lemma 4.2, that
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12
4.7) K, < Cl'MI! < J (o + is)I — A)_1x||§fds>
ai2<|s|

12
X (J (e — is)I — A*)'lcoxyllzde)
a2<jsl

< CU M) 2yl - -
Moreover, by (f.1)
4.8) K, < Cl, M)IX| £yl 5 for any I>1.
Combining (4.7) and (4.8), we have

eat N
(4.9) L0 <51l ' M) X1l 1yl e -
Letting « >0 in (4.6) and (4.9), we obtain (4.1) for any x e C°(2g+;). By

(f2), (4.1) holds for any x € #%. [

Theorem 1.2 follows from Proposition 4.1 and Lemma 2.3.

§5. Behavior of R(4) near 1 =0

Our purpose in this section is to show (f£3) in §4. Namely, we shall
investigate the behavior of the resolvent in a neighborhood of A =0. When
n > 3, (f£3) was proved by Shibata [14, Part 1], so that we shall discuss the
case that n =2 only.

5.1 Reduction to a simple case. Let us consider the following exterior
Dirichlet problem

(P,) A—Du=f inQcR® and u=0 on I,

where 1€ S,,={1e C\{0}||A| <rJargi|<m—¢e}, 0<r<1 and 0 <e < 7/2.
The main step in proving (f.3) is the following theorem.

Theorem 5.1. There exist an r and an A(A) € Anal(S, ;; (L omp, H*()))
such that

A—DAAS =f in Q2 and AA)f =0 on I',
for feL.p, and L€S, ,, where

Lcomp = RU L%((Q) .

2ro

Moreover, for any R >r, and @ge CP(R?) such that oz =1 for |x| <R and



A Dissipative Wave Equation 559

=0 for |x| > R + 1 there exists a C = C(pg, R) such that

(5.1.1) lor A1y < CISIl,
d
(5.1.2) Pr ;A | < Clm ATHAN
1
d2
(5.1.3) Pr 7z ADS “ < ClIm 4172 f1
1

for feL%(Q) and A€S,,.

Postponing the proof of Theorem 5.1, we shall show (f£.3). The following
lemma immediately follows from Lemma 3.4 of [14].

Lemma 52. Let # be a Banach space with norm |-|. Let f(r)e

0@\@%%}lfK%yﬂﬂsCUNWﬁWeRWij=QL2JMm

Jw | flr 4+ 2h) — 2f(z + h) + f(»)ldT < C(f)|h|.

Combining Theorem 5.1 and Lemma 5.2, we have the following lemma.

Lemma 5.3. For any f e L%(Q), g € Hp(R2), « such that 0 < o < 2r/3 and
p(s) € CX(R) such that supp p(s) < {|s| < 2r/3}, we have

(5.14) Kp( Y orAle +i)f, o)1, < ML fIlIV9]

where M, is a constant depending essentially on p, R and @g only.

Proof of (£3). In terms of A(4), we shall represent (A — A)™*. If we put

-l

for I:::| € D(A), then we have

v=Au—f and {AA+1)—-4dlu=QA+1)f+g in Q.

We take ¥’ < r so small that there exists an & < m/2 such that A(A + 1)€S,,
if AeS, .. We expect to get

u=AMAA+ D){(A + )f + g}
and

v=AAAL+ D) {A+Df+g} - f
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for x = [f:| € H,,mp- From this consideration, if we put
g

A+ DAGGA+1)  AGGR+ 1) ]

R(#) = [ MA+DAGA+ D) — 1 AAGAQA + 1)

we have

RAx=(QI - A 'x for xe #

comp

and AeS,. .,

because R(4)x € D(4) as it follows from the fact that A(A(A + 1)) € L(Lomp»
H*(Q)N Hp(RQ)). By Theorem 5.1 and Lemma 5.3, we also know that R()
satisfies all the properties mentioned in (f.3) with d = 2r'/3. O

5.2 Potential theory and integral equations. In order to express a solution
to (P,), we shall deal with potential theory. Our strategy follows Borchers
and Varnhorn [2] mainly.

A fundamental solution E; satisfying the distributional identity (A—A)E,=
0 can be written as follows:

4 1 1
E;(xy=F [m:l = EK0(|X|\/I) .

Here and hereafter, F™! denotes the Fourier inverse transform, ﬂ € C denotes
the particular square root of 1€ S, , with Re \/A >0, and K, (n€ NU{0}) the
modified Bessel function of order n. Especially in the case that A =0,

1

1
Ey(x) = 7 log X

Let us introduce the boundary layer potentials with source densities ¥ e C°(I').
We define the single layer potential by the formula:

E,¥(x) = L E(x — y)¥(y)do, .

Now E,(x — y) has the following form:

1 1
(5.2.1) E,(x—y)=Es(x—y + 7 {log +log2—y+ E9(x — y)} ,

N

where 7 = —I}((ll)) (I" being the Gamma function),
~ d ~
(5.2.2) E3(x — y) = O(|log 411 4)), ﬂEg(x — y) = O(|log 4])

2

s ~(1
and WEl(x—y)—0<m>
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(cf. [1]). Here and hereafter, O(f(4)) represents the terms satisfying the follow-
ing estimate:

16(f(A))l < Cf(A) VAeS,., |x| and |y| being bounded.

We define the double layer potential by the formula:

D, ¥(x) = J i D;(x, y)¥(y)do, ,

where

1
D;(x,y) =V E;(x —y)'N(y) = —EKl(Ix ylf) \[ (x—y) N(©y);

(x— ) N(y)
2n|x — y|?

1 1
D N = Vx 1 . N = -
0% ¥) =5 081 »
Here N(y) denotes the interior unit normal of I" at ye I. D,(x, y) has the
following form:

(5.2.3) D;(x, y) = Do(x, y) + D3(x, y),
where
~ d -
(5.2.4) Di(x,y)=O(log Al14l),  —D3(x,y) = O(|log A])

di

d? 1
and Fre DY(x,y) = (MI)

(cf. [1]). To represent the normal derivative of E,;® at I, let us define H, ¥(x)
(A€S8,,U{0}) in a neighborhood U of I by the formula:

H). T(X) = j{‘ Hl(x’ y) T(.Y)doy s H;_(X, y) = - VxE}.(x - y) N(-%) ’

where x € U, and X € I' denotes the unique projection of x on I. From the
definition we have

(5.2.5a) (H,¥):(x) = —(V:E; ¥)*(x)- N(x),
(5.2.5b) {D;®, ¥y =D, H;¥),
where

t—0+

wi(x) = lim w(x + tN(x)) for xelI', (&, ¥)= J dWdo .
r
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Since we know

(5.2.6) |K,,(ﬂ|x|)| < Cexp (—c\/mul) as \/WIxI >r>0 and 4€S§,,
with some constants C and ¢ depending on ¢ and r (cf. [1]), we have
(5.2.7) |02E,,(x — Y)I, 182D(x, y)| < C(a, 7, &) exp (—cy/[ Al |x — y1)

when /|Allx —y|=r and A€S,,. We shall use the following well-known
results of classical potential theorem (cf. [4, Chapter 3]).

Proposition 5.4. The double layer potential Dy with constant source den-
sity B e C satisfies the following relations

B xeQ°,
(5.2.8) (Dof)(x) =< B2 xel,
0 xeR.

Proposition 5.5. Let ¥ e C°(I") be given. Then we have

(5.2.9) (E,¥) =E,¥ =(E,¥P)*
(5.2.10) (D,¥)” —D,¥ = % W=D,V —(D,¥)*
(5.2.11) (H,¥) — H,¥ = —%?’=HAW—(H,1'I’)+.

Let us consider the exterior Dirichlet problem (Q;) of the form
(9.) A-MDu=0 in @ and u|,=b on I,

where b e C°(I') is given. Concerning the uniqueness of classical solutions of
(Qo), we have the following lemma:

Lemma 5.6. The solution of (Q,) is unique provided that
(5.2.12) u(x) =0, Fu(x) = O(|x|™) as |x|—oo.
Next lemma describes a decay property of the potential E,®.

Lemma 5.7. Let @ € C°(I") with [ ®do = 0. Then the single layer poten-
tial E,® satisfies the following decay property:

E,®=0(x"") as|x|> .

Since Lemmas 5.6 and 5.7 can be proved by similar arguments as in [2],
we omit the proofs.
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In order to prove the existence of a solution u of (Q;) (€S, ,) and (Q,),
let us introduce a boundary integral operator B, by the formula:

(5.2.13a) B, ®(x) = D, d(x) + E,®(x) for A€8,,,

2n
[T log ﬂ
(5.2.13b) By ®@(x) = Dy ®P(x) — By,

for @ e C°(I') where

1
D,y,=— | Pdo and |I'=| do.
u mL d L

Obviously (1 — 4)B,® =0 in Q for any @ e C°(I'), so that the problem is
how to compensate the boundary value. To consider this problem let us
introduce the operator K,: C°(I') - C°(I") by the formula:

1 2n
(5.2.14a K,®= <—~+D +——E >d5 for A€S,,,
) , i 2 i T logﬁ i

1
(5.2.14b) Ko = (—5 + Do)di — &,

In view of Proposition 5.5 we have (B,®)"(x) = K, ®(x) for xe I" and A€ S, U
{0). If we shall show the existence of the inverse operator K;' of K;, then
(Q,) is solved by the formula: u = B,K;'b, so that the following lemma as
well as the next one is a key of our discussion.

Lemma 5.8. Given be C°(I"), there exists a unique solution @ € C°(I") of
the equation: Ko®@ =b on I.

Proof. We employ essentially the same argument as in the proof of
Theorem 3.4 of [2]. Since K, is a Fredholm operator on C°(I") we study
the following homogeneous equation for the adjoint operator:

1
(5.2.15) K3‘¢=<—§+HO>¢—¢M=O on T,

where we have used (5.2.5b). Let @ e C°(I') be a solution of (5.2.15). Then
from (5.2.9) and (5.2.11) we obtain

' 1
(H0¢)_ = _§¢ + H0¢ = ¢M on F

Now we get @,,=0. In fact, for any fe C we have K,f = —f because
Dof=p/2 on I' from (5.2.8), hence —<{f, D> =K p, P> =<p,K§P)> =0,
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which implies @,, = 0. Therefore,

(5.2.16) (Ho®) =0 on I'.

By (5.2.11) we have

(5.2.17) @ =(Hy®)" — (Hy®) =(Hy®)" on I'.

Putting u = E,® we obtain, from Green’s first identity, (5.2.5a) and (5.2.16),

J |Vul?dy =0.
Qc

Therefore by (5.2.9) we have u = C (= const) on Q% If we put ii=u— C,
7 is a solution of (Q,) in 2 with b =0 on I. Since &, =0, it follows from
Lemma 5.7 that # satisfies (5.2.12). By Lemma 5.6 u=C in Q. Therefore
by (5.2.5a), (Hy,®)* =0 on I, which together with (5.2.17) yields @ = 0.
Applying the Fredholm alternative theorem, we have the lemma. []

Lemma 5.9. Let A€ C and let K, and K,: C®(I") - C°(I") be the boundary
integral operators defined by (5.2.14). Then there exists an r € (0, 1) such that
for A€S,, the inverse K;' of K, exists. Moreover, we have the following
estimates:

(5.2.18a) 1K < 21Ko',
(5.2.18b) | d K;'o < i@
o it oy |Al]log AP >
dz
2.18 — K;'o pqn— /] RS
o215 K], < g P
(5.2.19a) (Ko — K2)@|| =y < C |log M_l”dj”m(r) >
d
5.2.19b —(Ky—K,))® < e D] o 1y
(>-2150) H a&o ~ KIS Tiffiog a2 1Py
d2
5.2.19 — (K, — K,)® <——  _|D|;»
( <) H dﬂ.z( 0 ) o 2P ]log A7 1P 1=y

for any @ e C°(I).

Proof. We use (5.2.2) and (5.2.4). The proof is the same as in [2, Propo-
sition 3.8] and omitted. [

5.3 Proof of Theorem 5.1. Put
(53.1) AA)f =(A— N)Ef - BiK;'f,  for f€Lemy >
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where (4 — A)'Ef = [E;(x — y)Ef(y)dy, E is an extension operator by zero
from felL,,, to Ef € L*(R?*) and f; = (4 — A)Ef|, is the restriction of the
whole space solution to the boundary I'. Since (A — A)'Ef e H*(R?) for
L€8,, as follows from Parseval’s formula, the Sobolev’s imbedding theorem
implies f, e C°(I") for i€S,,. Therefore A(A)e Anal(S, ,; L(Loomp HX(Q)).
Moreover u = A(A)f satisfies the equations (P;). Our main task is to show
(5.1.1), (5.1.2) and (5.1.3). Let us start with the following proposition.

Proposition 5.10. Let 0 <¢<m and A€S,,. Then (A — A)'Ef is decom-
posed as follows:

(5.3.2) (A — A)T'Ef = —log AR°f + RYf,  for fe L3(Q),

where

1
R = f Ef()dy,
T JR2

1 1
R f = —J <log* +log2—y + Ej(x — y)>Ef(y)dy
27 | g2 [x — y|

Moreover the following estimates hold for €S, ,:

(5333) [@rRfllo, g2 < CR)|fllo. g logR3 fllo, r2 < C(R) | fllo.  »
d
(5.3.3b) or— R < C(R)|log Al fllo, o »
a2 o e
(53.30) C R <cw i
> Pr 72 om Dz le.e

Proof. From (5.2.1) and (5.2.2) we have the decomposition (5.3.2) and
the estimate (5.3.3a) by Schwarz’s inequality. By (5.2.1) and (5.2.2) we have
also (5.3.3b) and (5.3.3¢). O

Hereafter we assume that f is a function in L%(Q) and @ is a function
in C°(I'). According to (5.3.2) we set

fi = —log AR°f + RS,
where
Rif =R flr.
Then by (5.2.2) we have
(5.3.4a) IRf oy < CARISN s IRG fll gy < CR)ISI
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2
R.f C(R) l|f||

(5.3.4b) H—le 2

d
< C(R)|log AlILf1l » H

L>(I) L>(I)

According to (5.2.1) and (5.2.3), E; and D; are decomposed as follows:

1
(5.3.5) E,® = —Ulog A®y, + 5 —Elo,
(5.3.6) D,® =D,® + D2,
where

ES® = j (—log|x — y| +log 2 — y + E3(x — y))®(y)do, ,
r

D}® = J DY (x, y)@(y)do, .
r

By (5.2.2) and (5.2.4), we have that
(5.3.7a) lorPull < ClIlPll pory 5 lorE3®| < CIl Pl to(r »
logE,@| < C |log 4| “¢||Lm(r) 5

d
(5.3.7b) "’Rﬂ (pRﬂE’l

” < Cllog H[Blimcr »

1
D | < Coll @llpiry »
{ a7 e

2 2

(5.3.7¢) ‘

1 d
PR3 Egd5 < C7”¢“LW(I’) > Or—- E; D 3 qu”m(r) 5
di |4] dA |11|

(53.8a) |@rDo®@l < Cl®@llwiry,  NorDi®| < ClAl|log AP a(ry »
lorD; Pl < CH¢“L®(F) >

d d
(5.3.8b) or—:D,P | = || or= DB | < C [log 2P| oy »
di dl
2 2
3. ——D,® D | < D
(5.3.8¢c) (deile H (PR(MZ ! N Cl IH I (I »

where C = C(R). Let us calculate B,K;'f;. To get the formula
(5.3.9) Dlelfl = _10g ngKalRof + D}.Kleif
—log AD;K5' (Ko — K;)K;'Rf,

we use the fact that DyKy'R°f = 0, which follows from K3'R%f = R°fKg'l =
—R°f and Dyl =0 on  (cf. (5.2.8)). The fact that Kg'1 = —1 follows from
the following observation. Since by Proposition 5.4 Dy(—1)+1/2=0 on I,
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we have K,(—1) = 1, which implies that Kg'1 = —1. To get the formula:

2n 2
53.10 " E.K;Yf, = —log AR — = E9K3'R°f
( ) |Fllog\/:1/1 » | 0
IR
|F[ log\/’ l }. Af
4r

~ (7 EaKo (Ko ~ K)KZRS

we use the fact that |I'|(Kg*R%f )y = [ — R%do = —R°f|I'|. In view of (5.3.2)
and (5.3.10), the worst term of A(4):log AR®f is cancelled, so that we have

(53.11)  AQ)f = RYf + log AD?K3'R%f — D,K;'RLf
2

+log AD,K3! (Ko — KK} RY + = EJKG' RS
4n
K;'RLf + " E o — K)K;'Rf .
Ifllog\/— Af"r T Kol (K DK RYf
Applying (5.2.18), (5:2.19), (5.3.3), (5:3.4), (5.3.7) and (5.3.8) to (5.3.11) we have
(5.3.12a) lorAMAS | < CR)ISI S
C(R)
(53.120) o g2 | < 71,
d’ C(R)
(53129 lon s A0F | < it

To get (5.1.1), (5.1.2) and (5.1.3) from (5.3.12) we use the facts that u = A(4)f
satisfies (P,) and

17 (oru)|*> = ({ — @rd@r + V- (@xV @r)}u, 1) — Re(@gu, prdu) ;
d d
4 ANS = A + laA(l)f on Q,

;;A(l)f 2 A(/l)f+i A(/l)f on Q,

which complete the proof of Theorem 5.1.
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