On a Local Energy Decay of Solutions of a Dissipative Wave Equation

By

Wakako Dan and Yoshihiro Shibata

(University of Tsukuba, Japan)
Dedicated to Professor Kôji Kubota on his sixtieth birthday

§ 1. Introduction

This paper is concerned with a local energy decay property of solutions to the initial boundary value problem of the dissipative wave equation:

(D)
$$\begin{cases} u_{tt} + u_t - \Delta u = 0 & \text{in } \Omega \text{ and } t > 0, \\ u = 0 & \text{on } \Gamma \text{ and } t > 0, \\ u(0, x) = u_0(x), u_t(0, x) = u_1(x) & \text{in } \Omega, \end{cases}$$

where Ω is an exterior domain in an *n*-dimensional Euclidean space \mathbb{R}^n , whose boundary Γ is a C^{∞} and compact hypersurface. Below, $r_0 > 0$ is a fixed constant such that $\Omega^c \subset B_{r_0} = \{x \in \mathbb{R}^n | |x| < r_0\}$ (Ω^c is the complement of Ω).

In the case of usual wave equation, the local energy decays exponentially fast if n is odd and polynomially fast if n is even at least under the condition that Ω is nontrapping (cf. [9], [10], [11], [16]). This is reasonable from a physical point of view because the energy propagates along the wave fronts, so that the motion stops after time passes unless the wave front is trapped in a bounded set.

In the case of dissipative wave equation, the energy propagates again along the wave front. But, the trapped energy also decreases by virtue of the dissipative term u_t , so that we can expect to get a local energy decay result without any geometrical condition on Ω . In fact, Shibata [14] proved the following theorem.

Theorem 1.1. Assume that $n \ge 3$. Let $R > r_0$ and let u(t, x) be a smooth solution of (D) such that supp u(0, x), supp $u_t(0, x) \subset \Omega_R = \{x \in \Omega | |x| < R\}$. Then, there exists a constant C > 0 depending on n and R such that

$$\begin{split} \int_{\Omega_R} \left\{ |u_t(t,x)|^2 + \sum_{|\alpha| \leq 1} |\partial_x^\alpha u(t,x)|^2 \right\} dx \\ & \leq C (1+t)^{-n} \left\{ \sum_{|\alpha| \leq 3} \int_{\Omega} |\partial_x^\alpha u_t(0,x)|^2 dx + \sum_{|\alpha| \leq 4} \int_{\Omega} |\partial_x^\alpha u(0,x)|^2 dx \right\}, \\ where \ \partial_x^\alpha v = \partial^{|\alpha|} v / \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}, \ \alpha = (\alpha_1, \dots, \alpha_n) \ and \ |\alpha| = \alpha_1 + \dots + \alpha_n. \end{split}$$

The purpose of this paper is to extend and improve the above result as follows.

Theorem 1.2. Assume that $n \ge 2$. Let $R > r_0$ and $u_0 \in H^1_{0,R}(\Omega)$ and $u_1 \in L^2_R(\Omega)$, where

$$\begin{split} L^2_R(\Omega) &= \left\{ f \in L^2(\Omega) | \mathrm{supp} \ f \subset \Omega_R \right\} \,, \\ H^1_{0,R}(\Omega) &= \left\{ f \in H^1(\Omega) | \mathrm{supp} \ f \subset \Omega_R, \, f = 0 \ on \ \Gamma \right\} \,. \end{split}$$

Let u(t, x) be a weak solution of (D). Then, there exists a constant C depending on n and R such that

$$\begin{split} &\int_{\Omega_R} \left\{ |u_t(t,x)|^2 + \sum_{|\alpha| \le 1} |\partial_x^\alpha u(t,x)|^2 \right\} dx \\ &\le C(1+t)^{-n} \left\{ \int_{\Omega} |u_1(x)|^2 dx + \sum_{|\alpha| \le 1} \int_{\Omega} |\partial_x^\alpha u_0(x)|^2 dx \right\} \,. \end{split}$$

Compared with Theorem 1.1, our result removes the smoothness assumption on solutions of (D) and includes the case n = 2 as well as the case $n \ge 3$.

For the Cauchy problem of the dissipative wave equation (i.e. $\Omega = \mathbb{R}^n$), A. Matsumura [8] studied the decay rate of solutions. His argument was based on the concrete representation of solutions by use of the Fourier transform. When Ω is bounded it is well-known that the energy of solutions decays exponentially fast. Indeed, this fact is easily proved by a standard energy method combined with Poincaré's inequality. Since Ω is unbounded in our case, we cannot use Poincaré's inequality. And also, because of the boundary, we cannot use the Fourier transform. Our method is based on a spectral analysis to the corresponding stationary problem with parameter λ :

$$(\lambda^2 + \lambda - \Delta)u = f$$
 in Ω and $u = 0$ on Γ .

This paper is organized as follows. In § 2, we introduce the space $H_D(\Omega)$ as the completion of $C_0^\infty(\Omega)$ with respect to Dirichlet norm and give several properties of the space $H_D(\Omega)$. In § 3, we shall prove that $A = \begin{bmatrix} 0 & 1 \\ \Delta & -1 \end{bmatrix}$ generates a C_0 semigroup on $H_D(\Omega) \times L^2(\Omega)$. In § 4, we formulate the problem in the abstract manner and prove Theorem 1.2 under a suitable assumption on the behavior of $(\lambda - A)^{-1}$ near $\lambda = 0$. In § 5, we investigate the behavior of $(\lambda - A)^{-1}$ near $\lambda = 0$ and complete the proof.

§ 2. The properties of $H_D(\Omega)$

For any open set $\mathcal{O} \subset \mathbb{R}^n$, $C_0^{\infty}(\mathcal{O})$ denotes the space of all C^{∞} functions on \mathbb{R}^n whose support is compact and lies in \mathcal{O} (in particular, such functions

vanish near the boundary of (\mathcal{O}) , $L^2(\mathcal{O})$ a usual L^2 space on \mathcal{O} with norm $\|\cdot\|_{\mathcal{O}}$ and inner product $(\cdot,\cdot)_{\mathcal{O}}$, and $H^s(\mathcal{O})$ a usual Sobolev space of order s on \mathcal{O} with norm $\|\cdot\|_{s,\,\mathcal{O}}$. $\|\cdot\|_{k,\,\Omega}$ will be denoted simply by $\|\cdot\|_{k}$. Likewise for $\|\cdot\|_{\Omega}$ and $(\cdot,\cdot)_{\Omega}$. Let us define the space $H_D(\Omega)$ by

$$\begin{split} H_D(\Omega) &= \left\{ u \in H^1_{loc}(\Omega) | \mathcal{V} u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n} \right) \in L^2(\Omega) \,, \qquad u = 0 \quad \text{on } \Gamma, \\ \exists \text{ a sequence } \left\{ u_n \right\} \subset C_0^\infty(\Omega) \text{ s.t. } \|\mathcal{V}(u_n - u)\| \to 0 \text{ as } n \to \infty \right\}, \end{split}$$

where $H^1_{loc}(\Omega) = \{u \in \mathscr{D}'(\Omega) | u \in H^1(\Omega_R) \ \forall R > r_0\}$. As we mentioned in §1, $H_D(\Omega)$ will play an important role since A will be dissipative in this space. Although $H_D(\Omega)$ coincides with the completion of $C_0^{\infty}(\Omega)$ with respect to $\|\mathcal{V}\cdot\|$ we prefer to adopt the above definition to make some properties clearer.

Lemma 2.1. (1) For any $R \ge r_0$, there exists a constant C = C(R) such that

Here and hereafter, the letter C is used to denote various constants and C(A, B, ...) denotes a constant depending on A, B, ... in the parenthesis.

(2) There exists a constant C such that

(2.2)
$$\int_{\Omega} \frac{|\varphi(x)|^2}{d(x)^2} dx \le C \|\nabla \varphi\|^2 \qquad \forall \varphi \in C_0^{\infty}(\Omega),$$

where

$$d(x) = \begin{cases} |x| & \text{if } n \ge 3, \\ |x| \log (B|x|) & \text{if } n = 2 \end{cases}$$

and B is a constant such that $B|x| \ge 2$ as $x \in \Omega$.

Proof. (2.1) is well-known and the proof is omitted. (2.2) is also well-known (cf. [6], [12], [15, Lemma 1.3]). For the completeness, however, we shall give a proof for the case n = 2. We fix $R \ge r_0$. Noting that

$$\int_{|x| \ge R} |\varphi(x)|^2 (\log (B|x|)|x|)^{-2} dx = \int_{|\omega| = 1} \int_R^\infty \varphi(r\omega)^2 (\log (Br))^{-2} r^{-1} dr d\omega$$

and

$$\begin{split} \int_{R}^{\infty} \varphi(r\omega)^{2} (\log{(Br)})^{-2} r^{-1} dr &= \varphi(R\omega)^{2} (\log{(BR)})^{-1} \\ &+ 2 \int_{R}^{\infty} \varphi(r\omega) \omega \cdot \mathcal{V} \varphi(r\omega) (\log{(Br)})^{-1} dr, \end{split}$$

we have

$$\begin{split} & \int_{|x| \geq R} |\varphi(x)|^2 (\log B|x|)|x|)^{-2} dx \leq C(R) \int_{|\omega| = 1} |\varphi(R\omega)|^2 d\omega \\ & + 2 \bigg(\int_{|x| \geq R} |\varphi(x)|^2 (\log (B|x|)|x|)^{-2} dx \bigg)^{1/2} \bigg(\int_{|x| \geq R} |\nabla \varphi(x)|^2 dx \bigg)^{1/2} \ . \end{split}$$

To calculate the first term of the right-hand side, we take a function $\rho(x) \in C_0^{\infty}(\mathbb{R}^n)$ such that $\rho(\omega) = 1$ for any $|\omega| \le R$ and supp $\rho \subset B_{2R}$. From

$$\varphi(R\omega)^2 = -\int_R^\infty \frac{\partial}{\partial r} \{ \varphi(r\omega)^2 \rho(r\omega) \} dr ,$$

it follows that

$$|\varphi(R\omega)|^2 \leq \frac{2}{R} \int_R^\infty |\varphi(r\omega)| |F\varphi(r\omega)| |\rho(r\omega)| r dr + \frac{1}{R} \int_R^\infty |\varphi(r\omega)|^2 |F\rho(r\omega)| r dr.$$

Applying (2.1), we have

$$\begin{split} \int_{|\omega|=1} |\varphi(R\omega)|^2 d\omega & \leq \frac{2}{R} \left(\int_{|x| \geq R} |\varphi(x)|^2 |\rho(x)| dx \right)^{1/2} \left(\int_{|x| \geq R} |V\varphi(x)|^2 |\rho(x)| dx \right)^{1/2} \\ & + \frac{1}{R} \left(\int_{|x| \geq R} |\varphi(x)|^2 |V\rho(x)| dx \right) \\ & \leq C(R) \|\varphi\|_{1/Q_T}^2 \leq C(R) \|V\varphi\|^2 \; . \end{split}$$

Therefore we have proved that

(2.3)
$$\int_{|x| \ge R} \frac{|\varphi(x)|^2}{d(x)^2} dx \le C(R) \| \nabla \varphi \|^2.$$

On the other hand, since there exists a constant $C_R > 0$ such that $d(x) > C_R$ in Ω_R , from (2.1) we have

(2.4)
$$\int_{\Omega_R} \frac{|\varphi(x)|^2}{d(x)^2} dx \le \frac{1}{C_R^2} \int_{\Omega_R} |\varphi(x)|^2 dx \le C(R) \|\nabla \varphi\|^2 .$$

(2.3) and (2.4) imply (2.2).

From the definition of $H_D(\Omega)$ we have immediately the following.

Lemma 2.2. Let $\{v_n\} \subset C_0^{\infty}(\Omega)$ be a sequence such that $\|V(v_n - v_m)\| \to 0$ as $n, m \to \infty$. Then there exists a $v \in H_D(\Omega)$ such that $\|V(v_n - v)\| \to 0$ as $n \to \infty$.

From Lemma 2.1 we have:

Lemma 2.3. If $u \in H_D(\Omega)$, then u satisfies the following inequalities:

$$||u||_{0,\Omega_R} \le C(R) ||\nabla u||_{0,\Omega_R},$$

(2.6)
$$\int_{\Omega} \frac{|u(x)|^2}{d(x)^2} dx \le C \|Fu\|^2.$$

Moreover, $H_D(\Omega)$ is a Hilbert space equipped with an inner product $(u, v)_D = (\nabla u, \nabla v)$.

§ 3. A construction of C_0 semigroup solving (D)

Putting $u_t = v$, we rewrite the problem (D) in the following form:

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \Delta & -1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = A \begin{bmatrix} u \\ v \end{bmatrix}.$$

An underlying space for A is

$$\mathcal{H} = \left\{ \begin{bmatrix} u \\ v \end{bmatrix} | u \in H_D(\Omega), v \in L^2(\Omega) \right\}.$$

From Lemma 2.3 we know that \mathcal{H} is a Hilbert space equipped with the inner product

$$\left(\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} w \\ z \end{bmatrix}\right)_{\mathscr{H}} = (u, w)_D + (v, z).$$

The domain of A is

$$D(A) = \left\{ \begin{bmatrix} u \\ v \end{bmatrix} \in \mathcal{H} \mid A \begin{bmatrix} u \\ v \end{bmatrix} \in \mathcal{H} \right\} = \left\{ \begin{bmatrix} u \\ v \end{bmatrix} \in \mathcal{H} \mid v \in H_D(\Omega), \Delta u \in L^2(\Omega) \right\}.$$

For any open subset \mathcal{O} we put

$$\pmb{C}_0^\infty(\mathcal{O}) = \left\{ \begin{bmatrix} f \\ g \end{bmatrix} | f \text{ and } g \in C_0^\infty(\mathcal{O}) \right\} \, .$$

In order to prove that A generates a C^0 semigroup on \mathcal{H} it is sufficient, in view of the Lumer and Phillips theorem [13, Chapter 1, Theorem 4.3], to prove the following proposition.

Proposition 3.1. (1) A is a closed operator.

- (2) A is a dissipative operator.
- (3) $\mathcal{R}(I-A) = \mathcal{H}$.
- (4) D(A) is dense in \mathcal{H} .

Proof. To prove (1), let us assume that $D(A) \ni \begin{bmatrix} u_n \\ v_n \end{bmatrix} \to \begin{bmatrix} u \\ v \end{bmatrix}$ in \mathscr{H} and $A \begin{bmatrix} u_n \\ v_n \end{bmatrix} \to \begin{bmatrix} f \\ g \end{bmatrix}$ in \mathscr{H} . Then we have $v_n \to v$ and $\nabla v_n \to \nabla f$ in $L^2(\Omega)$, which implies that $\nabla v = \nabla f$ and $v_n \to v$ in $H^1(\Omega)$. Since v = f = 0 on Γ we see v = f and $v \in H_D(\Omega) \cap L^2(\Omega)$. Since $\Delta u_n \to g + v$ in $L^2(\Omega)$ and $\Delta u_n \to \Delta u$ in \mathscr{D}' , $\Delta u = g + v$ in $L^2(\Omega)$, which implies that A is closed. To prove (2) we calculate $A \begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} u \\ v \end{bmatrix}_{\mathscr{H}} = \begin{pmatrix} v \\ \Delta u - v \end{bmatrix}, \begin{bmatrix} u \\ v \end{bmatrix}_{\mathscr{H}}$. Since ∇u , Δu , v and $\nabla v \in L^2(\Omega)$ and v = 0 on Γ .

$$(\Delta u, v) = \lim_{R \to \infty} \int_{\Omega} \rho_R \Delta u v dx$$

$$= -\lim_{R \to \infty} \int_{\Omega} \nabla \rho_R \cdot \nabla u v dx - \lim_{R \to \infty} \int_{\Omega} \rho_R \nabla u \cdot \nabla v dx = -(\nabla u, \nabla v),$$

where $\rho(x) \in C_0^{\infty}(\mathbb{R}^n)$ such that $\rho(x) = 1$ if $|x| \le 1$ and $|x| \ge 2$ and $\rho_R(x) = \rho(x/R)$. Therefore we have

(3.1)
$$\operatorname{Re}\left(A\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} u \\ v \end{bmatrix}\right)_{\mathscr{H}} = -\|v\|^2 \le 0,$$

which implies that A is dissipative. Moreover, it follows from (3.1) that

(cf. [13, Chapter 1, Theorem 4.2]). We shall prove (3). Since $C_0^{\infty}(\Omega)$ is dense both in $H_D(\Omega)$ and in $L^2(\Omega)$, in view of (1) and (3.2) it is sufficient to prove that for any $\begin{bmatrix} f \\ g \end{bmatrix} \in C_0^{\infty}(\Omega)$, there exists a $\begin{bmatrix} u \\ v \end{bmatrix} \in D(A)$ such that

$$(I - A) \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}.$$

Substitute the relation: u - v = f of the first component into the second component in (3.3), and the problem is reduced to finding a solution $u \in H^2(\Omega)$ of the equation:

$$2u - \Delta u = g + 2f$$
 in Ω and $u = 0$ on Γ .

Since it is well-known that $\{2u - \Delta u | u \in H^2(\Omega) \text{ and } u = 0 \text{ on } \Gamma\} = L^2(\Omega) \text{ (cf. } [12, \text{ Chapter 3]}), \text{ there exists a } \begin{bmatrix} u \\ v \end{bmatrix} \in D(A) \text{ satisfying (3.3) for any } \begin{bmatrix} f \\ g \end{bmatrix} \in C_0^{\infty}(\Omega).$

Last of all we shall prove (4). Assume that there exists a $\begin{bmatrix} u \\ v \end{bmatrix} \in \mathcal{H}$ such that $\left(\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} f \\ g \end{bmatrix} \right)_{\mathcal{H}} = 0$ for any $\begin{bmatrix} f \\ g \end{bmatrix} \in D(A)$. Since there exists a $\begin{bmatrix} p \\ q \end{bmatrix} \in D(A)$ such that $(I - A) \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix}$,

$$0 = \left((I - A) \begin{bmatrix} p \\ q \end{bmatrix}, \begin{bmatrix} p \\ q \end{bmatrix} \right)_{\mathscr{H}} = \left\| \begin{bmatrix} p \\ q \end{bmatrix} \right\|_{\mathscr{H}}^2 - \left(A \begin{bmatrix} p \\ q \end{bmatrix}, \begin{bmatrix} p \\ q \end{bmatrix} \right)_{\mathscr{H}}.$$

Therefore, by (2) we have $\begin{bmatrix} p \\ q \end{bmatrix} = 0$, that is, $\begin{bmatrix} u \\ v \end{bmatrix} = 0$. \Box

The Lumer and Phillips theorem implies the following theorem:

Theorem 3.2. A generates a C^0 semigroup $\{T(t)\}$ on \mathcal{H} .

Put the region D as follows:

$$D = D_i \cup D_r$$
,

where

$$D_i = \{\lambda \in C | 2 \text{ Re } \lambda + 1 > 0, \text{ Im } \lambda \neq 0\} \text{ and } D_r = \{\lambda \in R | \lambda > 0\}.$$

In view of the Lumer and Phillips theorem and [13, Chapter 1, Corollary 3.6] we know that

(3.4)
$$\rho(A) \supset \{\lambda \in C | \operatorname{Re} \lambda > 0\}$$
 and $\|(\lambda I - A)^{-1}\| \le \frac{1}{\operatorname{Re} \lambda}$ for $\operatorname{Re} \lambda > 0$.

Lemma 3.3. For $\lambda \in D \cap \rho(A)$ we have

(3.5)
$$\left\| \begin{bmatrix} u \\ v \end{bmatrix} \right\|_{\mathscr{H}} \le C(\lambda) \left\| (\lambda I - A) \begin{bmatrix} u \\ v \end{bmatrix} \right\|_{\mathscr{H}} \forall \left[\begin{matrix} u \\ v \end{matrix} \right] \in D(A),$$

where $C(\lambda)$ is a constant depending on λ continuously.

Proof. For $\lambda \in D_i \cap \rho(A)$, let $\begin{bmatrix} u \\ v \end{bmatrix} \in D(A)$ be a couple of functions satisfying that

Then from (3.6) it follows that

(3.7)
$$\lambda(\lambda+1)u - \Delta u = g + (\lambda+1)f$$
 in Ω and $u = 0$ on Γ .

Since $u = \lambda^{-1}(v + f) \in L^2(\Omega)$ and $\Delta u \in L^2(\Omega)$ we can multiply (3.7) by Δu to obtain

(3.8)
$$\{ (\operatorname{Re} \lambda)^2 - (\operatorname{Im} \lambda)^2 + \operatorname{Re} \lambda \} \| \nabla u \|^2 + \| \Delta u \|^2 + i(2 \operatorname{Re} \lambda + 1) \operatorname{Im} \lambda \| \nabla u \|^2$$
$$= -(g, \Delta u) + (\lambda + 1)(\nabla f, \nabla u) .$$

Taking the imaginary part of (3.8), we have

$$(3.9) \|\nabla u\|^2 \le \frac{|\lambda+1|^2}{(|2\operatorname{Re}\lambda+1||\operatorname{Im}\lambda|)^2} \|\nabla f\|^2 + \frac{2}{|2\operatorname{Re}\lambda+1||\operatorname{Im}\lambda|} \|g\| \|\Delta u\|.$$

On the other hand by (3.8)

Combining (3.9) and (3.10), we have

$$\| \mathcal{V}u \|^2 + \| \Delta u \|^2 \le \left\{ \frac{|\lambda + 1|^2}{l^2} + \frac{3}{2} \left(\frac{3|\lambda||\lambda + 1|^3}{l^2} + \frac{|\lambda + 1|}{|\lambda|} \right) \right\} \| \mathcal{V}f \|^2$$

$$+ \left\{ \frac{2}{l^2} + \frac{3}{2} \left(\frac{3|\lambda||\lambda + 1|}{l} + 1 \right)^2 \right\} \| g \|^2 ,$$

where $l = |2 \operatorname{Re} \lambda + 1| |\operatorname{Im} \lambda|$. Since $v = (\lambda + 1)^{-1}(g + \Delta u)$ and $\lambda \in D_i$, it follows that

$$||v||^2 \le 8(||\Delta u||^2 + ||g||^2).$$

Therefore we obtain that

(3.11)

$$\|\nabla u\|^2 + \|v\|^2 \le C_1(\lambda)(\|\nabla f\|^2 + \|g\|^2) \quad \text{for } \lambda \in D_i \cap \rho(A) \quad \text{and} \quad \begin{bmatrix} f \\ g \end{bmatrix} \in C_0^{\infty}(\Omega).$$

Here $C_1(\lambda)$ is continuous in D_i . Since $C_0^{\infty}(\Omega)$ is dense in both $H_D(\Omega)$ and $L^2(\Omega)$, (3.11) holds for any $\begin{bmatrix} f \\ g \end{bmatrix} \in \mathcal{H}$ and $\lambda \in D_i \cap \rho(A)$. Combining the above argument and (3.4) implies the lemma. \square

Lemma 3.4.

$$(1) D \subset \rho(A)$$

(2)
$$\|(\lambda I - A)^{-1}\| \le 7 + \frac{2}{|\lambda|} \quad \text{if } \operatorname{Re} \lambda = 0 \quad \text{and} \quad \operatorname{Im} \lambda \ne 0 .$$

Proof. (1) Put $E = D \cap \rho(A)$. Since D is a connected set, it is sufficient to prove that E is non-empty, open and closed. It is clear that $E \neq \phi$ and E

is open. Our task is to prove that E is closed in D. Let $\{\lambda_n\} \subset E$ such that $\lambda_n \to \lambda$ in D as $n \to \infty$. By Lemma 3.3 there exists an M such that

(3.12)
$$\left\| \begin{bmatrix} u \\ v \end{bmatrix} \right\|_{\mathscr{L}} \leq M \left\| (\mu I - A) \begin{bmatrix} u \\ v \end{bmatrix} \right\|_{\mathscr{L}} \quad \forall \begin{bmatrix} u \\ v \end{bmatrix} \in D(A),$$

where $\mu = \lambda_n (n \in N)$ and λ . If we prove that $\lambda I - A$ is surjective, then (3.12) implies immediately $\lambda \in \rho(A)$, that is, E is closed. Let us show that $\lambda I - A$ is surjective. Since $\lambda_n \in \rho(A)$, for any $\begin{bmatrix} f \\ g \end{bmatrix} \in \mathcal{H}$ there exists a $\begin{bmatrix} u_n \\ v_n \end{bmatrix} \in D(A)$ such that $(\lambda_n I - A) \begin{bmatrix} u_n \\ v_n \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$. If there exists a $\begin{bmatrix} u \\ v \end{bmatrix} \in \mathcal{H}$ such that

we can conclude that $(\lambda I - A)$ is surjective, because A is closed operator. From (3.12) it follows that

(3.14)
$$\left\| \begin{bmatrix} u_n \\ v_n \end{bmatrix} \right\|_{\mathcal{H}} \le M \left\| \begin{bmatrix} f \\ g \end{bmatrix} \right\|_{\mathcal{H}} .$$

Observing that

$$(\lambda_n I - A) \left(\begin{bmatrix} u_n \\ v_n \end{bmatrix} - \begin{bmatrix} u_m \\ v_m \end{bmatrix} \right) = (\lambda_m - \lambda_n) \begin{bmatrix} u_m \\ v_m \end{bmatrix}$$

we have from (3.12) and (3.14)

$$\left\| \begin{bmatrix} u_n \\ v_n \end{bmatrix} - \begin{bmatrix} u_m \\ v_m \end{bmatrix} \right\|_{\mathscr{H}} \leq M |\lambda_m - \lambda_n| \left\| \begin{bmatrix} u_m \\ v_m \end{bmatrix} \right\|_{\mathscr{H}} \leq M^2 |\lambda_m - \lambda_n| \left\| \begin{bmatrix} f \\ g \end{bmatrix} \right\|_{\mathscr{H}} \to 0 ,$$

as $n, m \to \infty$, which implies (3.13).

(2) We put
$$\lambda = ik$$
, $k \neq 0$ and $(ikI - A)\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$. Then we have

$$(3.15) ik ||\nabla u||^2 + (1 - ik)||v||^2 = (\nabla f, \nabla u) + (v, g).$$

Taking the real part of (3.15) we have

$$||v||^2 \le ||g||^2 + 2||\nabla f|| \, ||\nabla u||.$$

Taking the imaginary part of (3.15) and considering (3.16) we have

$$\|Vu\|^2 \le \left(3 + \frac{1}{|k|^2}\right) \|g\|^2 + 2\left(9 + \frac{1}{|k|^2}\right) \|Vf\|^2$$

which implies (2).

By the resolvent equation and (3.4) we have the following lemma.

Lemma 3.5. Put b(a) = a/2(2 + 7a). Then for any a > 0 there exists an $M_a > 0$ such that

$$||(\lambda I - A)^{-1}|| \le M_a$$

 $for \ \lambda \in D_{a,b(a)} = \{\lambda \in C | | \operatorname{Re} \lambda| \le b(a) \ and \ | \operatorname{Im} \lambda| \ge a \} \cup \{\lambda \in C | \operatorname{Re} \lambda \ge b(a) \}.$

Proof. At first, we consider the case that $\lambda = \mu + ik$, $|k| \ge a$. When $\lambda = ik$, $|k| \ge a > 0$, from (2) of Lemma 3.4, we have $||(ikI - A)^{-1}|| \le 7 + 2/a$. By the resolvent equation we obtain the estimate:

$$\|((\mu+ik)I-A)^{-1}\| \le 7 + \frac{2}{a} + |\mu|\left(7 + \frac{2}{a}\right)\|((\mu+ik)I-A)^{-1}\|.$$

Since b(a) = a/2(2 + 7a), then we have $\|(\lambda I - A)^{-1}\| \le 2(7 + 2/a)$ for $|\mu| \le b(a)$ and $|k| \ge a$. Moreover from (2) of Lemma 3.4 we have $\|(\lambda I - A)^{-1}\| \le 1/\text{Re }\lambda$ $\le 1/b(a) = 2(7 + 2/a)$ for $\text{Re }\lambda \ge b(a)$. Therefore if we put $M_a = 2(7 + 2/a)$, then (3.17) holds. \square

§ 4. A proof of Theorem 1.2

In view of §3, we know the following fact.

- (f.1) Let a>0. Then, $\rho(A)\supset D_{a,b(a)}$ and $\sup\{\|(\lambda I-A)^{-1}\|\,\big|\,\lambda\in D_{a,b(a)}\}\leq M_a$. We know also that:
- (f.2) Let $R \ge r_0$. For any $\mathbf{x} \in \mathcal{H}_R$ there exists a sequence $\{\mathbf{x}_j\} \subset C_0^{\infty}(\Omega_{R+1})$ such that $\mathbf{x}_j \to \mathbf{x}$ in \mathcal{H} .

Here and hereafter we put $\mathscr{H}_R = \left\{ \begin{bmatrix} u \\ v \end{bmatrix} \in \mathscr{H} | \text{supp } u, \text{ supp } v \subset \Omega_R \right\}$. In fact, since $C_0^\infty(\Omega)$ is dense in \mathscr{H} , there exists a sequence $\{\mathbf{x}_j\} \subset C_0^\infty(\Omega)$ such that $\mathbf{x}_j \to \mathbf{x}$ in \mathscr{H} . Below, $\varphi_R(x)$ always refers to a function in $C_0^\infty(R^n)$ such that $\varphi_R(x) = 1$ if $|x| \leq R$ and = 0 if $|x| \geq R + 1$. Since $\varphi_R \mathbf{x} = \mathbf{x}$, from Lemma 2.3

$$\|\varphi_R \mathbf{x}_i - \mathbf{x}\|_{\mathscr{H}} = \|\varphi_R (\mathbf{x}_i - \mathbf{x})\|_{\mathscr{H}} \le C(R) \|\mathbf{x}_i - \mathbf{x}\|_{\mathscr{H}} \to 0$$
 as $j \to \infty$

which implies that $\{\varphi_R \mathbf{x}_i\}$ satisfies the desired property.

Now we shall introduce some function spaces. Let E be a Banach space with norm $|\cdot|_E$, $N \ge 0$ an integer and $k = N + \sigma$ with $0 < \sigma \le 1$. Put

$$\mathscr{C}^k = \mathscr{C}^k(\pmb{R}^1; E) = \left\{ u \in C^\infty(\pmb{R}^1 \setminus \{0\}; E) | \langle \langle u \rangle \rangle_{k,E} < \infty \right\},\,$$

where

$$\langle\!\langle u \rangle\!\rangle_{k,E} = \sum_{j=0}^{N} \int_{\mathbf{R}} \left| \left(\frac{d}{d\tau} \right)^{j} u(\tau) \right|_{E} d\tau$$

$$+ \sup_{h \neq 0} |h|^{-\sigma} \int_{\mathbf{R}} \left| \left(\frac{d}{d\tau} \right)^{N} u(\tau + h) - \left(\frac{d}{d\tau} \right)^{N} u(\tau) \right|_{E} d\tau \quad \text{if } 0 < \sigma < 1 \text{ ,}$$

$$\langle\!\langle u \rangle\!\rangle_{k,E} = \sum_{j=0}^{N} \int_{\mathbf{R}} \left| \left(\frac{d}{d\tau} \right)^{j} u(\tau) \right|_{E} d\tau$$

$$+ \sup_{h \neq 0} |h|^{-1} \int_{\mathbf{R}} \left| \left(\frac{d}{d\tau} \right)^{N} u(\tau + 2h) - 2 \left(\frac{d}{d\tau} \right)^{N} u(\tau + h) + \left(\frac{d}{d\tau} \right)^{N} u(\tau) \right|_{E} d\tau \text{ ,}$$

$$\text{if } \sigma = 1. \quad \text{Here, } \left(\frac{d}{d\tau} \right)^{0} = 1. \quad \text{Moreover, we put }$$

$$\mathcal{H}_{loc} = \left\{ \begin{bmatrix} u \\ v \end{bmatrix} | u \in H^{1}(\Omega_{R}), v \in L^{2}(\Omega_{R}) \quad \forall R \geq r_{0} \right\} \text{ ,}$$

$$\mathcal{H}_{comp} = \bigcup_{R \geq r_{0}} \mathcal{H}_{R} \text{ .}$$

 $\mathcal{L}(B_1, B_2)$ denotes the set of all bounded linear operators from B_1 into B_2 and Anal(I, B) the set of all B-valued analytic functions in I. In § 5, we shall show the following fact:

(f.3) Put $Q_d = \{\lambda \in C | 0 < \text{Re } \lambda < d, |\text{Im } \lambda| < d\}$. Then, there exist a d > 0 and an $R(\lambda) \in Anal(Q_d; \mathcal{L}(\mathcal{H}_{comp}, \mathcal{H}_{loc}))$ such that:

(a)
$$R(\lambda)\mathbf{x} = (\lambda I - A)^{-1}\mathbf{x}$$
 for $\mathbf{x} \in \mathcal{H}_{comp}$ and $\lambda \in Q_d$;

(b) For any $R \ge r_0$ and $\rho(s) \in C_0^{\infty}(R)$ such that $\rho(s) = 1$ if |s| < d/2 and = 0 if |s| > d, there exists an $M_1 > 0$ depending on R, ρ and d such that

$$\langle\!\langle \rho(\cdot)(\varphi_R R(\alpha+i\cdot)\mathbf{x},\mathbf{y})_{\mathscr{H}}\rangle\!\rangle_{n/2,R} \leq M_1 \|\mathbf{x}\|_{\mathscr{H}} \|\mathbf{y}\|_{\mathscr{H}}$$

for any $x \in \mathcal{H}_R$, $y \in \mathcal{H}$ and $0 < \alpha < d$.

By using facts (f.1)-(f.3) we prove the following main result of this section, which will imply Theorem 1.2.

Proposition 4.1. We have

(4.1)
$$\|\varphi_R T(t)\mathbf{x}\|_{\mathscr{H}} \le C(1+t)^{-n/2} \|\mathbf{x}\|_{\mathscr{H}}$$
 for $\mathbf{x} \in \mathscr{H}_R$, where $C = C(R, M_a, M_1)$.

Before going to a proof of Proposition 4.1, we shall prepare some lemmas, below. Since A is dissipative, T(t) is a C^0 semigroup of contractions, so that

$$(4.2) ||T(t)|| \le 1 \forall t \ge 0.$$

By a lemma due to F. Huang in [5, §1, Lemma 1] (also see [7]), we have the following lemma.

Lemma 4.2. For any $\alpha > 0$ and $\mathbf{x} \in \mathcal{H}$, put

$$g(\omega) = \|((\alpha + i\omega)I - A)^{-1}\mathbf{x}\|_{\mathcal{H}}.$$

Then $g(\omega) \in L^2(\mathbf{R})$ and

$$\lim_{|\omega| \to \infty} g(\omega) = 0 ,$$

$$\int_{-\infty}^{\infty} g(\omega)^2 d\omega \le \frac{\pi}{\alpha} \|\mathbf{x}\|_{\mathscr{H}}^2.$$

The following lemma is concerned with the properties of the Fourier transformation of functions belonging to \mathcal{C}^k , which was proved in [14, Part 1, Theorem 3.7].

Lemma 4.3. Let E be a Banach space with norm $|\cdot|_E$. Let $N \ge 0$ be an integer and σ be a positive number ≤ 1 . Assume that $f \in \mathscr{C}^{N+\sigma}(\mathbb{R}^1; E)$. Put

$$F(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\tau) \exp{(\sqrt{-1}\tau t)} d\tau.$$

Then,

$$|F(t)|_E \le C(1+|t|)^{-(N+\sigma)} \langle \langle f \rangle \rangle_{N+\sigma,E}.$$

Proof of Proposition 4.1. Let α be a fixed positive number. In view of (4.2), we have the following expression:

(4.5)
$$T(t)\mathbf{x} = \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\alpha - i\omega}^{\alpha + i\omega} e^{\lambda t} (\lambda I - A)^{-1} \mathbf{x} d\lambda$$

(cf. [12, p. 295] or [13, Chapter 1, Corollary 7.5]). Let us take $\alpha < d$, $\mathbf{x} \in C_0^\infty(\Omega_{R+1})$ and $\mathbf{y} \in \mathcal{H}$. Note that $\mathbf{x} \in D(A^2) \cap \mathcal{H}_{R+1}$. Then,

$$\begin{split} (\varphi_R T(t)\mathbf{x}, \mathbf{y})_{\mathscr{H}} &= \frac{1}{2\pi} \lim_{|\omega| \to \infty} \int_{-\omega}^{\omega} e^{(\alpha + is)t} (\varphi_R ((\alpha + is)I - A)^{-1}\mathbf{x}, \mathbf{y})_{\mathscr{H}} ds \\ &= \frac{1}{2\pi} e^{\alpha t} \int_{-\infty}^{\infty} e^{ist} \rho(s) (\varphi_R ((\alpha + is)I - A)^{-1}\mathbf{x}, \mathbf{y})_{\mathscr{H}} ds \\ &+ \frac{1}{2\pi} e^{\alpha t} \lim_{|\omega| \to \infty} \int_{-\omega}^{\omega} e^{ist} (1 - \rho(s)) (\varphi_R ((\alpha + is)I - A)^{-1}\mathbf{x}, \mathbf{y})_{\mathscr{H}} ds \\ &= J_1(t) + J_2(t) \,. \end{split}$$

Now we consider the term $J_1(t)$. (a) of (f.3) implies that $\rho(s)((\alpha + is)I - A)^{-1}\mathbf{x} = \rho(s)R(\alpha + is)\mathbf{x}$. From (b) of (f.3) and Lemma 4.3 it follows that

$$(4.6) |J_1(t)| \le e^{\alpha t} C(1+|t|)^{-n/2} \langle \langle \rho(\cdot)(\varphi_R R(\alpha+i\cdot)\mathbf{x},\mathbf{y})_{\mathscr{H}} \rangle \rangle_{n/2,\mathbf{R}}$$

$$\le e^{\alpha t} C M_1 (1+|t|)^{-n/2} ||\mathbf{x}||_{\mathscr{H}} ||\mathbf{y}||_{\mathscr{H}}.$$

Next we consider the term $J_2(t)$. Let us put $J_2(t) = (e^{\alpha t}/2\pi) \lim_{|\omega| \to \infty} L_{\omega}(t)$. Using the identity $(it)^{-1} de^{ist}/ds = e^{ist}$ we have, by integration by parts

$$\begin{split} L_{\omega}(t) &= \frac{1}{it} \left[e^{ist} (1 - \rho(s)) (\varphi_{R}((\alpha + is)I - A)^{-1} \mathbf{x}, \mathbf{y})_{\mathscr{X}} \right]_{s=-\omega}^{\omega} \\ &+ \frac{-1}{(it)^{2}} \left[e^{ist} \frac{d}{ds} \left\{ (1 - \rho(s)) (\varphi_{R}((\alpha + is)I - A)^{-1} \mathbf{x}, \mathbf{y})_{\mathscr{X}} \right\} \right]_{s=-\omega}^{\omega} \\ &+ \cdots + \frac{(-1)^{l-1}}{(it)^{l}} \left[e^{ist} \frac{d^{l-1}}{ds^{l-1}} \left\{ (1 - \rho(s)) (\varphi_{R}((\alpha + is)I - A)^{-1} \mathbf{x}, \mathbf{y})_{\mathscr{X}} \right\} \right]_{s=-\omega}^{\omega} \\ &+ \frac{(-1)^{l}}{(it)^{l}} \int_{-\omega}^{\omega} e^{ist} \frac{d^{l}}{ds^{l}} \left\{ (1 - \rho(s)) (\varphi_{R}((\alpha + is)I - A)^{-1} \mathbf{x}, \mathbf{y})_{\mathscr{X}} \right\} ds. \end{split}$$

Since we have, by (f.1)

$$\left\| \frac{d^{j}}{ds^{j}} ((\alpha + is)I - A)^{-1} \right\| \le j! M_{a}^{j} \| ((\alpha + is)I - A)^{-1} \| \quad \text{for } |s| > a$$

it follows from (4.3) of Lemma 4.2 that

$$\left| \left[e^{ist} \frac{d^j}{ds^j} \left\{ (1 - \rho(s)) (\varphi_R((\alpha + is)I - A)^{-1} \mathbf{x}, \mathbf{y})_{\mathscr{H}} \right\} \right]_{s = -\omega}^{\omega} \right| \to 0 \quad \text{as } |\omega| \to \infty.$$

Let the last term of $L_{\omega}(t)$ be $(-1)^{l}L_{\omega}^{l+1}(t)/(it)^{l}$. Noting that Lemma 4.2 holds for the adjoint operator, we have

$$\begin{split} L_{\omega}^{l+1}(t) &\leq l! \int_{d/2 \leq |s| \leq \omega} (1 - \rho(s)) |((\alpha + is)I - A)^{-l}\mathbf{x}, ((\alpha - is)I - A^*)^{-1}\varphi_R \mathbf{y})_{\mathscr{H}} |ds| \\ &+ \sum_{j=0}^{l-1} \binom{l}{j} j! \int_{d/2 \leq |s| \leq \omega} \left| \frac{d^j}{ds^j} \rho(s) \right| |(\varphi_R((\alpha + is)I - A)^{-(j+1)}\mathbf{x}, \mathbf{y})_{\mathscr{H}} |ds| \\ &= K_1 + K_2 \; . \end{split}$$

If we take a < d/2 we obtain, by (f.1) and (4.4) of Lemma 4.2, that

(4.7)
$$K_{1} \leq C l! M_{a}^{l-1} \left(\int_{d/2 \leq |s|} \| ((\alpha + is)I - A)^{-1} \mathbf{x} \|_{\mathcal{H}}^{2} ds \right)^{1/2}$$

$$\times \left(\int_{d/2 \leq |s|} \| ((\alpha - is)I - A^{*})^{-1} \varphi_{R} \mathbf{y} \|_{\mathcal{H}}^{2} ds \right)^{1/2}$$

$$\leq C (l, M_{a}) \| \mathbf{x} \|_{\mathcal{H}} \| \mathbf{y} \|_{\mathcal{H}}.$$

Moreover, by (f.1)

(4.8)
$$K_2 \le C(l, M_a) \|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}} \quad \text{for any } l \ge 1$$
.

Combining (4.7) and (4.8), we have

$$|J_2(t)| \le \frac{e^{\alpha t}}{2\pi} |t|^{-l} C(l, M_a) \|\mathbf{x}\|_{\mathscr{H}} \|\mathbf{y}\|_{\mathscr{H}}.$$

Letting $\alpha \to 0$ in (4.6) and (4.9), we obtain (4.1) for any $\mathbf{x} \in C_0^{\infty}(\Omega_{R+1})$. By (f.2), (4.1) holds for any $\mathbf{x} \in \mathcal{H}_R$. \square

Theorem 1.2 follows from Proposition 4.1 and Lemma 2.3.

§ 5. Behavior of $R(\lambda)$ near $\lambda = 0$

Our purpose in this section is to show (f.3) in §4. Namely, we shall investigate the behavior of the resolvent in a neighborhood of $\lambda = 0$. When $n \ge 3$, (f.3) was proved by Shibata [14, Part 1], so that we shall discuss the case that n = 2 only.

5.1 Reduction to a simple case. Let us consider the following exterior Dirichlet problem

$$(P_{\lambda}) \qquad (\lambda - \Delta)u = f \quad \text{in } \Omega \subset \mathbb{R}^2 \quad \text{and} \quad u = 0 \quad \text{on } \Gamma,$$

where $\lambda \in S_{r,\varepsilon} = \{\lambda \in \mathbb{C} \setminus \{0\} | |\lambda| < r, |\arg \lambda| < \pi - \varepsilon\}, \ 0 < r < 1 \text{ and } 0 < \varepsilon < \pi/2.$ The main step in proving (f.3) is the following theorem.

Theorem 5.1. There exist an r and an $A(\lambda) \in Anal(S_{r,\varepsilon}; \mathcal{L}(L_{comp}, H^2(\Omega)))$ such that

$$(\lambda - \Delta)A(\lambda)f = f$$
 in Ω and $A(\lambda)f = 0$ on Γ .

for $f \in L_{comp}$ and $\lambda \in S_{r,\epsilon}$, where

$$L_{comp} = \bigcup_{R \geq r_0} L_R^2(\Omega) \ .$$

Moreover, for any $R \ge r_0$ and $\varphi_R \in C_0^{\infty}(\mathbb{R}^2)$ such that $\varphi_R = 1$ for $|x| \le R$ and

= 0 for $|x| \ge R + 1$ there exists a $C = C(\varphi_R, R)$ such that

(5.1.2)
$$\left\| \varphi_R \frac{d}{d\lambda} A(\lambda) f \right\|_1 \le C |\operatorname{Im} \lambda|^{-1} \|f\|,$$

(5.1.3)
$$\left\| \varphi_R \frac{d^2}{d\lambda^2} A(\lambda) f \right\|_1 \le C |\operatorname{Im} \lambda|^{-2} \|f\|$$

for $f \in L^2_R(\Omega)$ and $\lambda \in S_{r,\varepsilon}$.

Postponing the proof of Theorem 5.1, we shall show (f.3). The following lemma immediately follows from Lemma 3.4 of [14].

Lemma 5.2. Let \mathscr{B} be a Banach space with norm $|\cdot|$. Let $f(\tau) \in C^2(\mathbb{R}^1 \setminus \{0\}; \mathscr{B})$. If $\left| \left(\frac{d}{d\tau} \right)^j f(\tau) \right| \leq C(f) |\tau|^{-j}$, $\forall \tau \in \mathbb{R}^1 \setminus \{0\}$, j = 0, 1, 2, then, $\int_0^\infty |f(\tau + 2h) - 2f(\tau + h) + f(\tau)| d\tau \leq C(f) |h|.$

Combining Theorem 5.1 and Lemma 5.2, we have the following lemma.

Lemma 5.3. For any $f \in L_R^2(\Omega)$, $g \in H_D(\Omega)$, α such that $0 < \alpha < 2r/3$ and $\tilde{\rho}(s) \in C_0^{\infty}(R)$ such that supp $\tilde{\rho}(s) \subset \{|s| \le 2r/3\}$, we have

$$\langle \langle \tilde{\rho}(\cdot)(\varphi_{\mathbf{R}}A(\alpha+i\cdot)f,g)_{\mathbf{D}}\rangle_{1,\mathbf{R}} \leq M_2 \|f\| \|\nabla g\|,$$

where M_2 is a constant depending essentially on $\tilde{\rho}$, R and ϕ_R only.

Proof of (f.3). In terms of $A(\lambda)$, we shall represent $(\lambda I - A)^{-1}$. If we put

$$(\lambda I - A) \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

for $\begin{bmatrix} u \\ v \end{bmatrix} \in D(A)$, then we have

$$v = \lambda u - f$$
 and $\{\lambda(\lambda + 1) - \Delta\}u = (\lambda + 1)f + g$ in Ω

We take r' < r so small that there exists an $\varepsilon' < \pi/2$ such that $\lambda(\lambda+1) \in S_{r,\varepsilon}$ if $\lambda \in S_{r',\varepsilon'}$. We expect to get

$$u = A(\lambda(\lambda + 1))\{(\lambda + 1)f + g\}$$

and

$$v = \lambda A(\lambda(\lambda + 1))\{(\lambda + 1)f + g\} - f$$

for $\mathbf{x} \equiv \begin{bmatrix} f \\ g \end{bmatrix} \in \mathcal{H}_{comp}$. From this consideration, if we put

$$R(\lambda) = \begin{bmatrix} (\lambda + 1)A(\lambda(\lambda + 1)) & A(\lambda(\lambda + 1)) \\ \lambda(\lambda + 1)A(\lambda(\lambda + 1)) - 1 & \lambda A(\lambda(\lambda + 1)) \end{bmatrix},$$

we have

$$R(\lambda)\mathbf{x} = (\lambda I - A)^{-1}\mathbf{x}$$
 for $\mathbf{x} \in \mathcal{H}_{comp}$ and $\lambda \in S_{r',\epsilon'}$,

because $R(\lambda)\mathbf{x} \in D(A)$ as it follows from the fact that $A(\lambda(\lambda+1)) \in \mathcal{L}(L_{comp}, H^2(\Omega) \cap H_D(\Omega))$. By Theorem 5.1 and Lemma 5.3, we also know that $R(\lambda)$ satisfies all the properties mentioned in (f.3) with d = 2r'/3. \square

5.2 Potential theory and integral equations. In order to express a solution to (P_{λ}) , we shall deal with potential theory. Our strategy follows Borchers and Varnhorn [2] mainly.

A fundamental solution E_{λ} satisfying the distributional identity $(\lambda - \Delta)E_{\lambda} = \delta$ can be written as follows:

$$E_{\lambda}(x) = F^{-1} \left[\frac{1}{\lambda + i0 + |\xi|^2} \right] = \frac{1}{2\pi} K_0(|x|\sqrt{\lambda}).$$

Here and hereafter, F^{-1} denotes the Fourier inverse transform, $\sqrt{\lambda} \in C$ denotes the particular square root of $\lambda \in S_{r,\varepsilon}$ with Re $\sqrt{\lambda} \ge 0$, and K_n $(n \in N \cup \{0\})$ the modified Bessel function of order n. Especially in the case that $\lambda = 0$,

$$E_0(x) = \frac{1}{2\pi} \log \frac{1}{|x|}$$
.

Let us introduce the boundary layer potentials with source densities $\Psi \in C^0(\Gamma)$. We define the single layer potential by the formula:

$$E_{\lambda}\Psi(x) = \int_{\Gamma} E_{\lambda}(x-y)\Psi(y)do_{y}.$$

Now $E_{\lambda}(x-y)$ has the following form:

(5.2.1)
$$E_{\lambda}(x-y) = E_0(x-y) + \frac{1}{2\pi} \left\{ \log \frac{1}{\sqrt{\lambda}} + \log 2 - \gamma + E_{\lambda}^0(x-y) \right\},\,$$

where $\gamma = -\frac{\Gamma'(1)}{\Gamma(1)}$ (Γ being the Gamma function),

(5.2.2)
$$E_{\lambda}^{0}(x - y) = \tilde{O}(|\log \lambda| |\lambda|), \qquad \frac{d}{d\lambda} E_{\lambda}^{0}(x - y) = \tilde{O}(|\log \lambda|)$$
and
$$\frac{d^{2}}{d\lambda^{2}} E_{\lambda}^{0}(x - y) = \tilde{O}\left(\frac{1}{|\lambda|}\right)$$

(cf. [1]). Here and hereafter, $\tilde{O}(f(\lambda))$ represents the terms satisfying the following estimate:

$$|\tilde{O}(f(\lambda))| \le Cf(\lambda) \quad \forall \lambda \in S_{r,\varepsilon}, \quad |x| \text{ and } |y| \text{ being bounded }.$$

We define the double layer potential by the formula:

$$D_{\lambda}\Psi(x) = \int_{\Gamma} D_{\lambda}(x, y) \Psi(y) do_{y} ,$$

where

$$\begin{split} D_{\lambda}(x, y) &= V_{x} E_{\lambda}(x - y) \cdot N(y) = -\frac{1}{2\pi} K_{1}(|x - y| \sqrt{\lambda}) \frac{\sqrt{\lambda}}{|x - y|} (x - y) \cdot N(y) \,; \\ D_{0}(x, y) &= \frac{1}{2\pi} V_{x} \log \frac{1}{|x - y|} \cdot N(y) = -\frac{(x - y) \cdot N(y)}{2\pi |x - y|^{2}} \,. \end{split}$$

Here N(y) denotes the interior unit normal of Γ at $y \in \Gamma$. $D_{\lambda}(x, y)$ has the following form:

$$(5.2.3) D_{2}(x, y) = D_{0}(x, y) + D_{2}^{0}(x, y),$$

where

(5.2.4)
$$D_{\lambda}^{0}(x, y) = \tilde{O}(|\log \lambda| |\lambda|), \qquad \frac{d}{d\lambda} D_{\lambda}^{0}(x, y) = \tilde{O}(|\log \lambda|)$$
 and
$$\frac{d^{2}}{d\lambda^{2}} D_{\lambda}^{0}(x, y) = \tilde{O}\left(\frac{1}{|\lambda|}\right)$$

(cf. [1]). To represent the normal derivative of $E_{\lambda}\Phi$ at Γ , let us define $H_{\lambda}\Psi(x)$ $(\lambda \in S_{r,\varepsilon} \cup \{0\})$ in a neighborhood U of Γ by the formula:

$$H_{\lambda}\Psi(x) = \int_{\Gamma} H_{\lambda}(x, y) \Psi(y) do_{y}, \qquad H_{\lambda}(x, y) = -V_{x} E_{\lambda}(x - y) \cdot N(\tilde{x}),$$

where $x \in U$, and $\tilde{x} \in \Gamma$ denotes the unique projection of x on Γ . From the definition we have

$$(5.2.5a) (H_{\lambda}\Psi)^{\pm}(x) = -(V_{x}E_{\lambda}\Psi)^{\pm}(x) \cdot N(x),$$

$$\langle D_1 \Phi, \Psi \rangle = \langle \Phi, H_{\overline{1}} \Psi \rangle,$$

where

$$w^\pm(x) = \lim_{t\to 0+} w(x\pm t N(x)) \qquad \text{for } x\in \varGamma\,, \qquad \left<\varPhi,\, \varPsi\right> = \int_{\varGamma} \varPhi \overline{\varPsi} do\;.$$

Since we know

$$(5.2.6) \quad |K_n(\sqrt{\lambda}|x|)| \le C \exp\left(-c\sqrt{|\lambda|}|x|\right) \quad \text{as} \quad \sqrt{|\lambda|}|x| \ge r > 0 \quad \text{and} \quad \lambda \in S_{r,\varepsilon}$$

with some constants C and c depending on ε and r (cf. [1]), we have

$$(5.2.7) |\partial_x^{\alpha} E_{\lambda}(x-y)|, |\partial_x^{\alpha} D_{\lambda}(x,y)| \le C(\alpha, r, \varepsilon) \exp\left(-c\sqrt{|\lambda|}|x-y|\right)$$

when $\sqrt{|\lambda|}|x-y| \ge r$ and $\lambda \in S_{r,\epsilon}$. We shall use the following well-known results of classical potential theorem (cf. [4, Chapter 3]).

Proposition 5.4. The double layer potential $D_0\beta$ with constant source density $\beta \in C$ satisfies the following relations

(5.2.8)
$$(D_0\beta)(x) = \begin{cases} \beta & x \in \Omega^c, \\ \beta/2 & x \in \Gamma, \\ 0 & x \in \Omega. \end{cases}$$

Proposition 5.5. Let $\Psi \in C^0(\Gamma)$ be given. Then we have

$$(5.2.9) (E_{\lambda} \Psi)^{-} = E_{\lambda} \Psi = (E_{\lambda} \Psi)^{+}$$

(5.2.10)
$$(D_{\lambda} \Psi)^{-} - D_{\lambda} \Psi = \frac{1}{2} \Psi = D_{\lambda} \Psi - (D_{\lambda} \Psi)^{+}$$

(5.2.11)
$$(H_{\lambda} \Psi)^{-} - H_{\lambda} \Psi = -\frac{1}{2} \Psi = H_{\lambda} \Psi - (H_{\lambda} \Psi)^{+}.$$

Let us consider the exterior Dirichlet problem (Q_{λ}) of the form

$$(Q_{\lambda})$$
 $(\lambda - \Delta)u = 0$ in Ω and $u|_{\Gamma} = b$ on Γ ,

where $b \in C^0(\Gamma)$ is given. Concerning the uniqueness of classical solutions of (Q_0) , we have the following lemma:

Lemma 5.6. The solution of (Q_0) is unique provided that

(5.2.12)
$$u(x) = O(1), \quad \nabla u(x) = O(|x|^{-1}) \quad \text{as } |x| \to \infty.$$

Next lemma describes a decay property of the potential $E_0 \Phi$.

Lemma 5.7. Let $\Phi \in C^0(\Gamma)$ with $\int_{\Gamma} \Phi do = 0$. Then the single layer potential $E_0 \Phi$ satisfies the following decay property:

$$E_0 \Phi = O(|x|^{-1})$$
 as $|x| \to \infty$.

Since Lemmas 5.6 and 5.7 can be proved by similar arguments as in [2], we omit the proofs.

In order to prove the existence of a solution u of (Q_{λ}) ($\lambda \in S_{r,\epsilon}$) and (Q_0) , let us introduce a boundary integral operator B_{λ} by the formula:

$$(5.2.13a) B_{\lambda}\Phi(x) = D_{\lambda}\Phi(x) + \frac{2\pi}{|\Gamma|\log\sqrt{\lambda}}E_{\lambda}\Phi(x) \text{for } \lambda \in S_{r,\varepsilon},$$

(5.2.13b)
$$B_0 \Phi(x) = D_0 \Phi(x) - \Phi_M$$

for $\Phi \in C^0(\Gamma)$ where

$$\Phi_M = \frac{1}{|\Gamma|} \int_{\Gamma} \Phi do \text{ and } |\Gamma| = \int_{\Gamma} do.$$

Obviously $(\lambda - \Delta)B_{\lambda}\Phi = 0$ in Ω for any $\Phi \in C^{0}(\Gamma)$, so that the problem is how to compensate the boundary value. To consider this problem let us introduce the operator $K_{\lambda} : C^{0}(\Gamma) \to C^{0}(\Gamma)$ by the formula:

(5.2.14a)
$$K_{\lambda}\Phi = \left(-\frac{1}{2} + D_{\lambda} + \frac{2\pi}{|\Gamma|\log\sqrt{\lambda}}E_{\lambda}\right)\Phi$$
 for $\lambda \in S_{r,\varepsilon}$,

(5.2.14b)
$$K_0 \Phi = \left(-\frac{1}{2} + D_0\right) \Phi - \Phi_M$$
.

In view of Proposition 5.5 we have $(B_{\lambda}\Phi)^{+}(x) = K_{\lambda}\Phi(x)$ for $x \in \Gamma$ and $\lambda \in S_{r,\epsilon} \cup \{0\}$. If we shall show the existence of the inverse operator K_{λ}^{-1} of K_{λ} , then (Q_{λ}) is solved by the formula: $u = B_{\lambda}K_{\lambda}^{-1}b$, so that the following lemma as well as the next one is a key of our discussion.

Lemma 5.8. Given $b \in C^0(\Gamma)$, there exists a unique solution $\Phi \in C^0(\Gamma)$ of the equation: $K_0 \Phi = b$ on Γ .

Proof. We employ essentially the same argument as in the proof of Theorem 3.4 of [2]. Since K_0 is a Fredholm operator on $C^0(\Gamma)$ we study the following homogeneous equation for the adjoint operator:

(5.2.15)
$$K_0^* \Phi = \left(-\frac{1}{2} + H_0\right) \Phi - \Phi_M = 0 \quad \text{on } \Gamma,$$

where we have used (5.2.5b). Let $\Phi \in C^0(\Gamma)$ be a solution of (5.2.15). Then from (5.2.9) and (5.2.11) we obtain

$$(H_0 \Phi)^- = -\frac{1}{2} \Phi + H_0 \Phi = \Phi_M$$
 on Γ .

Now we get $\Phi_M = 0$. In fact, for any $\beta \in C$ we have $K_0 \beta = -\beta$ because $D_0 \beta = \beta/2$ on Γ from (5.2.8), hence $-\langle \beta, \Phi \rangle = \langle K_0 \beta, \Phi \rangle = \langle \beta, K_0^* \Phi \rangle = 0$,

which implies $\Phi_M = 0$. Therefore,

(5.2.16)
$$(H_0 \Phi)^- = 0$$
 on Γ .

By (5.2.11) we have

(5.2.17)
$$\Phi = (H_0 \Phi)^+ - (H_0 \Phi)^- = (H_0 \Phi)^+ \quad \text{on } \Gamma.$$

Putting $u = E_0 \Phi$ we obtain, from Green's first identity, (5.2.5a) and (5.2.16),

$$\int_{\Omega^c} |\nabla u|^2 dy = 0.$$

Therefore by (5.2.9) we have u = C (= const.) on $\overline{\Omega}^c$. If we put $\overline{u} = u - C$, \overline{u} is a solution of (Q_0) in Ω with b = 0 on Γ . Since $\Phi_M = 0$, it follows from Lemma 5.7 that \overline{u} satisfies (5.2.12). By Lemma 5.6 u = C in Ω . Therefore by (5.2.5a), $(H_0\Phi)^+ = 0$ on Γ , which together with (5.2.17) yields $\Phi = 0$. Applying the Fredholm alternative theorem, we have the lemma. \square

Lemma 5.9. Let $\lambda \in C$ and let K_{λ} and $K_0: C^0(\Gamma) \to C^0(\Gamma)$ be the boundary integral operators defined by (5.2.14). Then there exists an $r \in (0, 1)$ such that for $\lambda \in S_{r,\epsilon}$ the inverse K_{λ}^{-1} of K_{λ} exists. Moreover, we have the following estimates:

$$||K_{\lambda}^{-1}|| \le 2||K_{0}^{-1}||,$$

(5.2.18b)
$$\left\| \frac{d}{d\lambda} K_{\lambda}^{-1} \Phi \right\|_{L^{\infty}(\Gamma)} \le \frac{C}{|\lambda| |\log \lambda|^2} \|\Phi\|_{L^{\infty}(\Gamma)},$$

(5.2.18c)
$$\left\| \frac{d^2}{d\lambda^2} K_{\lambda}^{-1} \boldsymbol{\Phi} \right\|_{L^{\infty}(\Gamma)} \leq \frac{C}{|\lambda|^2 |\log \lambda|^2} \|\boldsymbol{\Phi}\|_{L^{\infty}(\Gamma)}.$$

for any $\Phi \in C^0(\Gamma)$.

Proof. We use (5.2.2) and (5.2.4). The proof is the same as in [2, Proposition 3.8] and omitted. \square

5.3 Proof of Theorem 5.1. Put

$$(5.3.1) A(\lambda)f = (\lambda - \Delta)^{-1}Ef - B_{\lambda}K_{\lambda}^{-1}f_{\lambda} \text{for } f \in L_{comp},$$

where $(\lambda - \Delta)^{-1}Ef = \int E_{\lambda}(x - y)Ef(y)dy$, E is an extension operator by zero from $f \in L_{comp}$ to $Ef \in L^2(\mathbb{R}^2)$ and $f_{\lambda} = (\lambda - \Delta)^{-1}Ef|_{\Gamma}$ is the restriction of the whole space solution to the boundary Γ . Since $(\lambda - \Delta)^{-1}Ef \in H^2(\mathbb{R}^2)$ for $\lambda \in S_{r,\varepsilon}$ as follows from Parseval's formula, the Sobolev's imbedding theorem implies $f_{\lambda} \in C^0(\Gamma)$ for $\lambda \in S_{r,\varepsilon}$. Therefore $A(\lambda) \in Anal(S_{r,\varepsilon}; \mathcal{L}(L_{comp}, H^2(\Omega))$. Moreover $u = A(\lambda)f$ satisfies the equations (P_{λ}) . Our main task is to show (5.1.1), (5.1.2) and (5.1.3). Let us start with the following proposition.

Proposition 5.10. Let $0 < \varepsilon < \pi$ and $\lambda \in S_{r,\varepsilon}$. Then $(\lambda - \Delta)^{-1}Ef$ is decomposed as follows:

$$(5.3.2) (\lambda - \Delta)^{-1} E f = -\log \lambda R^0 f + R^0_{\lambda} f, \text{for } f \in L^2_{\mathbb{R}}(\Omega),$$

where

$$R^{0}f = \frac{1}{4\pi} \int_{\mathbb{R}^{2}} Ef(y)dy,$$

$$R^{0}_{\lambda}f = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} \left(\log \frac{1}{|x-y|} + \log 2 - \gamma + E^{0}_{\lambda}(x-y) \right) Ef(y)dy.$$

Moreover the following estimates hold for $\lambda \in S_{r,\varepsilon}$:

$$(5.3.3a) \quad \|\varphi_R R^0 f\|_{0, \mathbb{R}^2} \le C(R) \|f\|_{0, \Omega} , \qquad \|\varphi_R R^0_{\lambda} f\|_{0, \mathbb{R}^2} \le C(R) \|f\|_{0, \Omega} ,$$

(5.3.3b)
$$\left\| \varphi_R \frac{d}{d\lambda} R_{\lambda}^0 f \right\|_{0, \mathbb{R}^2} \le C(R) |\log \lambda| \|f\|_{0, \Omega},$$

(5.3.3c)
$$\left\| \varphi_R \frac{d^2}{d\lambda^2} R_{\lambda}^0 f \right\|_{0, \mathbb{R}^2} \le C(R) \frac{1}{|\lambda|} \|f\|_{0, \Omega} .$$

Proof. From (5.2.1) and (5.2.2) we have the decomposition (5.3.2) and the estimate (5.3.3a) by Schwarz's inequality. By (5.2.1) and (5.2.2) we have also (5.3.3b) and (5.3.3c). \square

Hereafter we assume that f is a function in $L_R^2(\Omega)$ and Φ is a function in $C^0(\Gamma)$. According to (5.3.2) we set

$$f_{\lambda} = -\log \lambda R^0 f + R_{\lambda}^1 f,$$

where

$$R^1_\lambda f = R^0_\lambda f|_{\varGamma} \, .$$

Then by (5.2.2) we have

$$(5.3.4a) ||R^0 f||_{L^{\infty}(\Gamma)} \le C(R) ||f||, ||R^1_{\lambda} f||_{L^{\infty}(\Gamma)} \le C(R) ||f||,$$

$$(5.3.4b) \quad \left\| \frac{d}{d\lambda} R_{\lambda}^{1} f \right\|_{L^{\infty}(\Gamma)} \leq C(R) |\log \lambda| \|f\|, \qquad \left\| \frac{d^{2}}{d\lambda^{2}} R_{\lambda}^{1} f \right\|_{L^{\infty}(\Gamma)} \leq C(R) \frac{1}{|\lambda|} \|f\|.$$

According to (5.2.1) and (5.2.3), E_{λ} and D_{λ} are decomposed as follows:

(5.3.5)
$$E_{\lambda}\Phi = -\frac{|\Gamma|}{4\pi}\log\lambda\Phi_{M} + \frac{1}{2\pi}E_{\lambda}^{0}\Phi,$$

$$(5.3.6) D_{\lambda}\Phi = D_0\Phi + D_{\lambda}^0\Phi,$$

where

$$E_{\lambda}^{0}\Phi = \int_{\Gamma} (-\log|x-y| + \log 2 - \gamma + E_{\lambda}^{0}(x-y))\Phi(y)do_{y},$$

$$D_{\lambda}^{0}\Phi = \int_{\Gamma} D_{\lambda}^{0}(x,y)\Phi(y)do_{y}.$$

By (5.2.2) and (5.2.4), we have that

(5.3.7a)
$$\|\varphi_R \Phi_M\| \le C \|\Phi\|_{L^{\infty}(\Gamma)}, \qquad \|\varphi_R E_{\lambda}^0 \Phi\| \le C \|\Phi\|_{L^{\infty}(\Gamma)},$$
$$\|\varphi_R E_{\lambda} \Phi\| \le C \|\log \lambda \|\Phi\|_{L^{\infty}(\Gamma)},$$

$$(5.3.7b) \quad \left\| \varphi_R \frac{d}{d\lambda} E_{\lambda}^0 \varPhi \right\| \leq C \left\| \log \lambda \right\| \|\varPhi\|_{L^{\infty}(\varGamma)} , \qquad \left\| \varphi_R \frac{d}{d\lambda} E_{\lambda} \varPhi \right\| \leq C \frac{1}{|\lambda|} \|\varPhi\|_{L^{\infty}(\varGamma)} ,$$

$$(5.3.7c) \quad \left\| \left. \varphi_R \frac{d^2}{d\lambda^2} E_\lambda^0 \varPhi \right\| \leq C \frac{1}{|\lambda|} \|\varPhi\|_{L^\infty(\varGamma)} \;, \qquad \left\| \left. \varphi_R \frac{d^2}{d\lambda^2} E_\lambda \varPhi \right\| \leq C \frac{1}{|\lambda|^2} \|\varPhi\|_{L^\infty(\varGamma)} \;;$$

$$(5.3.8a) \quad \|\varphi_R D_0 \Phi\| \le C \|\Phi\|_{L^{\infty}(\Gamma)} , \qquad \|\varphi_R D_{\lambda}^0 \Phi\| \le C |\lambda| |\log \lambda| \|\Phi\|_{L^{\infty}(\Gamma)} ,$$
$$\|\varphi_R D_{\lambda} \Phi\| \le C \|\Phi\|_{L^{\infty}(\Gamma)} ,$$

(5.3.8b)
$$\left\| \varphi_{\mathbf{R}} \frac{d}{d\lambda} D_{\lambda} \Phi \right\| = \left\| \varphi_{\mathbf{R}} \frac{d}{d\lambda} D_{\lambda}^{0} \Phi \right\| \leq C \left| \log \lambda \right| \| \Phi \|_{L^{\infty}(\Gamma)},$$

(5.3.8c)
$$\left\| \varphi_{\mathbf{R}} \frac{d^2}{d\lambda^2} D_{\lambda} \Phi \right\| = \left\| \varphi_{\mathbf{R}} \frac{d^2}{d\lambda^2} D_{\lambda}^0 \Phi \right\| \le C \frac{1}{|\lambda|} \| \Phi \|_{L^{\infty}(\Gamma)},$$

where C = C(R). Let us calculate $B_{\lambda}K_{\lambda}^{-1}f_{\lambda}$. To get the formula

(5.3.9)
$$D_{\lambda}K_{\lambda}^{-1}f_{\lambda} = -\log \lambda D_{\lambda}^{0}K_{0}^{-1}R^{0}f + D_{\lambda}K_{\lambda}^{-1}R_{\lambda}^{1}f -\log \lambda D_{\lambda}K_{0}^{-1}(K_{0} - K_{\lambda})K_{\lambda}^{-1}R^{0}f,$$

we use the fact that $D_0K_0^{-1}R^0f=0$, which follows from $K_0^{-1}R^0f=R^0fK_0^{-1}1=-R^0f$ and $D_01=0$ on Ω (cf. (5.2.8)). The fact that $K_0^{-1}1=-1$ follows from the following observation. Since by Proposition 5.4 $D_0(-1)+1/2=0$ on Γ ,

we have $K_0(-1) = 1$, which implies that $K_0^{-1}1 = -1$. To get the formula:

(5.3.10)
$$\frac{2\pi}{|\Gamma| \log \sqrt{\lambda}} E_{\lambda} K_{\lambda}^{-1} f_{\lambda} = -\log \lambda R^{0} f - \frac{2}{|\Gamma|} E_{\lambda}^{0} K_{0}^{-1} R^{0} f$$
$$+ \frac{2\pi}{|\Gamma| \log \sqrt{\lambda}} E_{\lambda} K_{\lambda}^{-1} R_{\lambda}^{1} f$$
$$- \frac{4\pi}{|\Gamma|} E_{\lambda} K_{0}^{-1} (K_{0} - K_{\lambda}) K_{\lambda}^{-1} R^{0} f,$$

we use the fact that $|\Gamma|(K_0^{-1}R^0f)_M = \int_{\Gamma} -R^0fdo = -R^0f|\Gamma|$. In view of (5.3.2) and (5.3.10), the worst term of $A(\lambda)$: $\log \lambda R^0f$ is cancelled, so that we have

(5.3.11)
$$A(\lambda)f = R_{\lambda}^{0}f + \log \lambda D_{\lambda}^{0}K_{0}^{-1}R^{0}f - D_{\lambda}K_{\lambda}^{-1}R_{\lambda}^{1}f + \log \lambda D_{\lambda}K_{0}^{-1}(K_{0} - K_{\lambda})K_{\lambda}^{-1}R^{0}f + \frac{2}{|\Gamma|}E_{\lambda}^{0}K_{0}^{-1}R^{0}f - \frac{2\pi}{|\Gamma|\log_{2}\sqrt{\lambda}}E_{\lambda}K_{\lambda}^{-1}R_{\lambda}^{1}f + \frac{4\pi}{|\Gamma|}E_{\lambda}K_{0}^{-1}(K_{0} - K_{\lambda})K_{\lambda}^{-1}R^{0}f.$$

Applying (5.2.18), (5.2.19), (5.3.3), (5.3.4), (5.3.7) and (5.3.8) to (5.3.11) we have

(5.3.12a)
$$\|\varphi_R A(\lambda) f\| \le C(R) \|f\|$$
,

(5.3.12b)
$$\left\| \varphi_{R} \frac{d}{d\lambda} A(\lambda) f \right\| \leq \frac{C(R)}{|\lambda| |\log \lambda|} \|f\|,$$

(5.3.12c)
$$\left\| \varphi_R \frac{d^2}{d\lambda^2} A(\lambda) f \right\| \le \frac{C(R)}{|\lambda|^2 |\log \lambda|} \|f\|.$$

To get (5.1.1), (5.1.2) and (5.1.3) from (5.3.12) we use the facts that $u = A(\lambda)f$ satisfies (P_{λ}) and

$$\begin{split} \| V(\varphi_R u) \|^2 &= (\{ -\varphi_R \Delta \varphi_R + V \cdot (\varphi_R V \varphi_R) \} u, u) - \text{Re}(\varphi_R u, \varphi_R \Delta u) \,; \\ \Delta \frac{d}{d\lambda} A(\lambda) f &= A(\lambda) f + \lambda \frac{d}{d\lambda} A(\lambda) f \quad \text{on } \Omega \,, \\ \Delta \frac{d^2}{d\lambda^2} A(\lambda) f &= 2 \frac{d}{d\lambda} A(\lambda) f + \lambda \frac{d^2}{d\lambda^2} A(\lambda) f \quad \text{on } \Omega \,, \end{split}$$

which complete the proof of Theorem 5.1.

References

[1] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, New York: Dover, 1970.

- [2] Borchers, W. and Varnhorn, W., On the boundedness of the Stokes semigroup in twodimensional exterior domains, Math. Z. 213 (1993), 275-299.
- [3] Chang, I-Dee and Finn, R., On the solutions of an equations occurring in continuum mechanics with application to the Stokes paradox, Arch. Rational Mech. Anal. 7 (1961), 389-401.
- [4] Folland, G. B., Introduction to Partial Differential Equations/Preliminary informal notes of university courses and seminars in mathematics, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1976.
- [5] Huang, F. L., Characteristic condition for exponential stability of linear dynamical systems in Hibert spaces, Ann. of Diff. Eqns. 1 (1985), 43-56.
- [6] Leis, R., Initial Boundary Value Problems in Mathematical Physics, B. G. Teubner—Verlag Stuttgart; John Wiley & Sons, Chichester et al., 1986.
- [7] Liu, Z. and Zheng, S., Uniform exponential stability and approximation in control of thermoelastic system, preprint (1991).
- [8] Matsumura, A., On the asymptotic behaviour of solutions of semi-linear wave equations, Publ. RIMS, Kyoto Univ. 13 (1976), 363-386.
- [9] Melrose, R. B., Singularities and energy decay in acoustic scattering, Duke Math. J. 46 (1979), 43-59.
- [10] Morawetz, C. S., Decay of solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math. 28 (1975), 229-264.
- [11] Morawetz, C. S., Ralston, J. V. and Strauss, W. A., Decay of solution outside non-trapping obstacles. ibid 30 (1977), 447-508.
- [12] Mizohata, S., The Theory of Partial Differential Equations, Cambridge University Press, London, 1973.
- [13] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [14] Shibata, Y., On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain, Tsukuba J. Math. 7 (1983), 1-68.
- [15] Shibata, Y. and Soga, H., Scattering theory for the elastic wave equation, Publ. RIMS, Kyoto Univ. 25 (1989), 861-887.
- [16] Shibata, Y. and Tsutsumi, Y., On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z. 191 (1986), 165-199.
- [17] Varnhorn, W., An explicit potential theory for the Stokes resolvent boundary value problem in three dimensions, Manus. Math. 70 (1991), 339-361.
- [18] Weck, N. and Witsch, K. J., Exterior Dirichlet problem for the reduced wave equation: asymptotic analysis of low frequencies, Comm. Partial Differential Equations 16 (1991), 173-195.

nuna adreso:

Institute of Mathematics University of Tsukuba Tsukuba-shi, Ibaraki 305 Japan

(Ricevita la 14-an de januaro, 1994)