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The Cauchy Problem for Degenerate Parabolic Equations and
Newton Polygon
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1. Introduction

We are concerned with the homogeneous Cauchy problem for p-evolution
equations:

J=1 |al<pj

(1) L(t,x, 0, 0x)u(t,x) = (6:" - i Z a;(t, x)a;a;"‘f) u(t,x) =0,

(2) o 'u(0,x) =g;(x), 1<j<m,

where t € [0, T], T >0 and p > 0. It is known that the Cauchy problem is H*®-
wellposed if the equation (1) is p-parabolic (see I. G. Petrowsky [1] and S.
Mizohata [2]). There are also several papers on the Cauchy problem for
degenerate parabolic equations published in the 1970’s (cf. O. A. Oleinik [3], M.
Miyake [4] and K. Igari [5]). The equations studied there are, however, of first
order in d;. Recently K. Kitagawa [6], [7] investigated necessary conditions
for the Cauchy problem (1)-(2) to be well-posed. Put

3) aju(t, x) = 1" Wby (t, x),

plot the points (1 + i;i),ti_l) on the X Y-plane and draw the Newton polygon
PyP; ---Py,1 with Py = (0,0) and Pyyi = (c0,p). He defines a characteristic
equation corresponding to each vertex P; (1 <i < N) and one corresponding to
each side PP,y (1<i<N-1):

“) P AE) =" — 3 bu(0,%)(i0)*A"7 =0,
(jayers
(%) pilt,x, 4,8) = 2" — Y 17U I(0,%)(i) A" =0,

(j)el
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72

(1 + (Iiari)

(1 + e, )

where P; = (14 q;,1),
F;’E{(jac); (1 +G—(JEZ,';L,]>EP,-} and I",-E{(joz); (1 +@,l;‘—|) eP,-P,-+1}.

Note that p;(0,x, 4, &) = pf(x,4,¢) (1 <i< N —1). Regarding them as equa-
tions of A, denote their roots by Aj(x,&) and by Ax(t,x,&) (1<k<m)
respectively.

Theorem 1 (K. Kitagawa [6, Theorem 1], [7, Theorem 1]). For the
Cauchy problem to be H®-wellposed, it is necessary that

(6) Re 45(x,¢6) <0, (x,{)eR"xR", 1<i<N, 1<k<m,
(7) Re Aw(t,x,8) <0, (t,x,6)€(0,0)xR"xR", 1<i<N-1, 1<k<m.

But, in his papers, nothing is mentioned about sufficient conditions. Note
first that the conditions (6) and (7) are not sufficient. In fact, consider the
equation: ‘

8 3, — ad? — bt®d3 — ct’0Hu t,x) =0,
X X X

where a, b and ¢ are complex constants with Im b # 0. In this example, (6) and
(7) are equivalent to that Re a > 0 and Re ¢ < 0. But, by applying the theorem
of Petrowsky, which will be cited in §3, we see easily that the Cauchy problem
for this equation with datum at ¢t = 0 is H*-wellposed if and only if Rea >0
and Rec < 0.

In this paper, we prove

Theorem 2. Suppose the following A.1-A.4:
A.l the coefficients aj, and bj, depend only on t and are continuous in
te [0, To], Tp > 0.
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A2 o(ja) are non-negative rational numbers.
A.3 there exist 6; > 0 such that

9)  ReiW(O) <-&¢", ¢eR, 1<i<N, l<k<m.

A4
(10) Redw(t,&) <0, (t,&) e(0,00)x R", I1<i<N-1, 1<k<m

Then there exists T > 0 such that the Cauchy problem (1)—(2) is H*®-wellposed,
that is, for any ¢;(x) € H®(R"), there exists a unique solution u(t,x) e C™ ([0, T};
H®(R")). Moreover u(t,x) e C"((0, T]; HY),(R™)), where HY (R") (€H®(R")
stands for the Gevrey class of exponent 1/p.

The outline of the proof is as follows. By the Fourier transform with
respect to x, we get

(11) (a;" - zm: Z aja(t)(ig)“a;"-f) a(t, &) = 0.

J=1 lej<pj
The following proposition will be proved in §3.

Proposition 3. Suppose the conditions A.1-A.4. Then there exist positive
constants T, C, y and p such that any solution u(t,&) of (11) satisfies

(12) > 165t &) < CLEyTexp{—pt (e} (011 0, 8)],
j=1 j=1

(t,&)e[0,T] x R".

Theorem 2 immediately follows from this inequality.

To get the inequality (12), we need to obtain a series of energy estimates
corresponding to the vertexes and the sides of the Newton polygon. One of
the most crucial points is to prove the uniform boundedness of the definite
integral

b
(13) j 4 30(0,80)

46, I<i<N-1, 1<k<m
dt

with respect to &y e S" ! (Lemma 5. We essentially use the fact that the
coefficients of the characteristic equations (5) are polynomials in ¢!/* with some
veN.

This paper is constituted as follows:

In §2, two algebraic lemmas are prepared, whose proofs are given in
§5. In §3, Proposition 3 is proved. In §4, we consider the uniform H*®-
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wellposedness of the Cauchy problem and give sufficient conditions. We
should remark that the conditions A.1-A.4 are not sufficient for the uniform
H*-wellposedness.

Notation. We use the following notation in this paper:
x=(X1,..., %) €R", E=(&,..., &) ERY, € =4/E 4+ &, (O =
0 0
2 [ p— — _ .« e n =
VI+E5 6= pe Ox, axj,oc__ (ar,02,--+,04) eN", N={0,1,2,...,},
ol =0+« + oy, O = o ... 0%, s*l={¢eRY|E =1},
H*(R") = {f(x) e LX(R"); <& (&) e LAR")},

s=>0

HY (R") = (J{f(x) € H*(R"); exp(p<&YP)f (&) e L*(RM)},

p>0

C"(I; X) denotes the set of m times continuously differentiable functions of t € I
with value in X.

2. Two algebraic lemmas

The following two lemmas are essential in our proof. They will be
proved in §5.

Lemma 4. Let A be an m x m matrix of the following form:

a 1 (0]
any .
A= :
: o 1
Am1 AGm2 " Omm

and A (1 <k <m) its eigenvalues. Then there exists a regular matrix N =
(nif)lsi,jsm such that

(i) detN=1.
(ii) ny are polynomials in (ay, A).
/11 a;-;-
A
(iiiy D=N"1AN= 2 _ , Where aj; are polynomials in (aj, A).
o Am

Lemma 5. Let P(A,t) be a polynomial in (A,t), that is,

m n
P(A,t)=A"+ Z a;(t) A", a;(t) = Z axt* and  apeC
j=1 k=1

and denote continuous roots of P(A,t) =0 by Ax(t) (1 <k <m). Let M >0 and
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suppose |ag| < M for all j, k. Then for any —oo < a < b < o0, there exists a
positive constant C = C(m,n,a,b, M) such that

(14) jb

a

%lk(t)’dtsC(m,n,a,b,M), 1<k<m

3. Energy estimate

In order to prove Proposition 3, we prepare two propositions. The
following proposition enables us to get energy estimates corresponding to the
vertexes of the Newton polygon. Let 6] and 67 (1 <i< N) stand for the
slopes of the sides P;P;.; and those of the sides P,_iP; respectively.

Proposition 6. Assume (9), then there exist positive constants B; >0
(1 <i < N) such that estimates of the following form hold for any solution u(t, &)
of (11): for every fixed constants ©; satisfying 0 < @; < B;, there exist positive
constants C° = C°(©;) such that

(15) XmI 161 ta(t, &)| < C°(0:)|E* exp|—3K|¢|"
j=1
] x {(t]&|)H e — (@71~ o) ey

x 1ol tu(e7E ™, ¢)l,
=1

(t,€) € [0711¢]77, @477 x {¢ € RY; |¢| i ~D/212040) < @),
0;
where pl=(m—1)(ri—o7q;), Ki= [t a) and si=r;i—af (1+qi),
I1<i<N.
Proof. To avoid confusion, omit a suffix i. Put

() = t<m—i>q|5|<'"'f>'a{—1a(t, g, 1<j<m,
0°(t,8) = '@),...,82),  &=&l¢ (& es™),

then
ro m—j)q . .
i = t1|gf’ ]+1+( tj)q = I1<j<m-—1,
g => | D bu(0)(&) + Y {bja(t) — bu(0)}(i&)"
=1 L(joyere (joyere

+ Y ey (1) (i) €)M gt

(ja)¢I°
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Set
0 1 (0] /
2,U° = 0
t = 0 1 +
al a? \b,‘; N
dr 0\
q| |7 70
+ o i, t¢'U
co -y
= [A°(&) + B°(t, &) + C°(t, &)t U°,
where

@ =a(&)= Y. bu(0)i&)"

(jw)el*
by =b5(t,&) = Y {bu(t) — bu(0)}i&)*,
(ja)yere
o =8 = > b)) 1,
(jo)¢ I

_ _ R —(1 —-r .
& =d(,0) = (m—- DG, 1<j<m

Note that for the roots AJ(£) (1 <k<m) of the characteristic equation
p°(4, &) =0, |E]77A2 (&) = 47(&) and they are eigenvalues of the matrix A°(&).
By the assumption A.3,

Re 12(&) < — 6, &y e STl

By Lemma 4, there exists a regular matrix N°(&o) = (n7,(60))1 < jx < m satisfying
the following conditions:
(i) detN°=1, &esm L,
(i) n) are polynomials in (a?, 4).
' AL aj,
A7

(i) D°= N°14°N° = , Where aj are polynomials

in (af, A;).
Put
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1 0
I, = &
0 em-1
and N? = N°I,, then
A7 eay,
AO
D! =N"4°N? = 2
0 A
We shall determine the size of ¢ later. Put W, = N°~1U° = ‘(w{,...,w?) and

S¢ =W = X [wel’, then
8 W, = (D? + N2'B°N? + NOTICON2)t9|¢[ W,e.

Since

m m
Re (DWW, W,°) = Re {Z (l}’w]‘-’ + Z eazwy, w]")}

j=1 k=j+1
m
Z Re 47)|w7|? +Z Z £ agliwgllwy|

< (1 — 6+ const.g)S?,

where const. is a positive constant independent of &, we have

d
2 S2(t,€) = 2Re {(DIW2, W)+ (NS BONIW, W)+ (N2 CoONIW2, Wil
<{~25 + const.c + 2(|B°| + |C) NSNS}l S22, ).

Here estimate [B°|, |C°|, |[N?| and [N?~!|in turn. Assume te[@~!|¢]™7, @|§|_"+].
First, since

b7 (2, 50)|< Jmax |b,a(t b;x(0)| Z 1 and  by(t) e CO(0, Ty); ©),
for any ¢ > 0, there exists a positive constant §; = B;(g) such that

b7 (2, S0)| < 0<6 <8,

T

that is,
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1B(t, &) = [ D_Ibf(t, &)* <&, 0<O<py.
j=1

Second, since
4 . o(jo)—gqj| g|lal =1
lej (¢, é)lgorgéxalb]a(t)l Z U =ai|g| 1=
(ju)¢r°
and
o] —7j — o (o(ja) — qj) <O,  (ju) ¢ I"°,

we decompose and estimate the summation as follows:

|c]f’(t, 8 < const.{ Z @G(J‘u)—qimIul—rj—0+(¢(f¢)—‘li)+ Z IéIM_rj

(jo) ¢I°%,0( ja) >qj () ¢ I'*,0(jo)=qj

+ Y ey |«1—rf—a-(a<ja)—qf>}
() I a(in)<a)

< const.{ Z @lolin)—djl| + Z léllal_rj}-
(jo) ¢ %0 (jor) #qj (jo) £ I %0( ja)=qj

Then for any &> 0, there exists a positive constant 8, = B,(¢) such that

Sm

Ty [T <0 < .

lej (£, 9] <
Next, since
147 (2, 9)] < (m — 1)g0™+9|¢|” M < (m — 1)90' 1,

for any e > 0, there exists a positive constant f; = B;(¢) such that

Sm
P59 < ———, 0<O<Bh,
eIl s

The estimates above imply that

Co(t,8)] = iWW@VH#mMﬁS%
2 |

|17 772212040) < @ < min (B, By)-
Next, since n}’k(fo) are bounded,

IN?(&o)] < IN°(&)||Ie| < const.
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Moreover, since cofactors 75 (&) of the matrix N°(&p) are bounded,
NS (&)l < 1IN (8)] < const.e™™

Put f =min (f;,p,,B;). Then, for any positive constant @ satisfying 0 < @
< B, the following inequalities hold:

|B°| <¢&™, |C°|<é&™, |NJ|<comst. and

N < const.e!™, |¢| > (@27 1/20+a)y=2/(e"~a7).
€

Then
d r
7 87(t, &) < (=20 + const.e)t?|E|'S2(t, &)
Since const. is independent of & we can choose the size of & satisfying

d ., 36 rqo
7 5 (6:8) < — = 18871, 9),

SO we obtain

52(66) < exp U (-5 et Jax|szo-11 0

o™

Then
S2(t,¢) < exp [6K[E[*{(£1¢]7) 1 — (811¢| " ) YIS0, &),
(1,8) € [0, 61817 x (¢ € R |¢| = (92712140 ~2/e=a")y,

Using the inequalities S¢'/% = |W°| < |N°!||U°| and |U°| < |N°||W°| =
|N£"|S§]/ 2 and replacing by #, we obtain (15).

Remark. 1In (15), consider in the case t = @|é|_”+. Noting the inequality
€|~ /221/2040) < @, we have

3O - (071 ey < - X ot

thus we obtain

m m

. o . . 3K ; 1 1| £~
3 1ot a(ele] ,é)rsc(@)m"exp(—7@‘+‘f|¢|)2|@{ (e 1E, ),

j=1

Jj=1
€| = (@27 1/21+a)y =2/ =oT),

The following proposition enables us to get energy estimates corre-
sponding to the sides of the Newton polygon.



458 Masahiro MikamMi

Proposition 7. Assume (10), then for the constants ; (1<i<N-1)
given by Proposition 6, there exist positive constants C = C(©;) and R = R(0);)
such that for any solution u(t,&) of (11),

(16) Zw” (1, ) < C(O l)m"’exp( @”%161*)2!6” @447,

(1, &) € [0:E]7F, 0;1E 7] x { € R*; |¢] = R(6))},
where p; = (m—1)(ri—otq), 1<i<N-1

Proof. We omit a suffix 7 also here. For #}(t,{) (1<j<m) glven by
Proposition 6, put § = t|5|"+, 0e(0,071], 10,8 = u (0|§|_” ,€) and U(8,¢) =
"y, B, ..., 0m), then set

doit; = {itjp1 + (m — j)go0~ D)) i }09)¢|°

= {41 + d;(t, &) }09|E), 1<j<m-1,

aoam=2mj > 07U Vb (0)(E0)* + Y 0V {bju(B1E]™) — bu(0)} (o) ®

j=1 L(jo)er (jw)el’

+ golin— qu 9|§|"’+)(l§) |€llal—rj—d+(a(ia)—qj) am_j+19q|5|s
(joy¢I

= {46, &) + b;(8, &) + ¢;(8, &) Himj1691EF"
j=1

Set

0 1 (0]

doU °

U = 0 1 +
Ay <+ 0 Q R
d; 0

o+ A 0%\¢I’U

0 0y 14
cm o . e cl

= [A(6, &) + B(6,¢) + C(6, £)]6%|¢°U.

Now, note that |&|™"A(t, &) = Ak(0, &) (1 <k <m) and they are eigenvalues
of the matrix A(0,&;) for the roots Aix(t,&) of the characteristic equation
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p(t,A,&) =0. By the assumption A4,
Re 44(0,&) <0, 0,&) €[0,071] x s™ L.

By virtue of Lemma 4, there exists a regular matrix N (6, &o) = (nu(0, %0))1<jk<m
satisfying the following conditions:
(i) detN =1, (6,&)e[0,07!] x §* 1.
(ii) mny are polynomials in (a;, Ag).
ﬂ,l a}‘k

(i) D=N-14N= &

, where aj are polynomials in
0 Am
(aj, Ak)-
In the same way as Propositon 6, put N,=NI, W,=N;'U=
f(wi, Wa,y ey Why), Se = |Wg|2 = Z;”:l |w]-|2 and D, = N7!AN,. We shall deter-
mine the size of ¢ later. Then

oW, = {(De +N;'BN; + N 'CNo)O*|¢" + (;‘% N:l)Na}We,

% S:(6,¢) =2 Re [{(DgWs, W.) + (N BN:W,, W,) + (N, CN:W,, W) }0°|¢[*

(i)

d
< [{const.s-&- 2(|B| + |CDINY N Y04 € + 2 7 N1

}NEI] S:(0,&).

Here and hereafter const. denotes a positive constant depending on @. In the
same way as Proposition 6, for any &> 0, there exists a positive constant
R = R(0,¢) such that the following inequalities hold:

|B|<&", |C|<¢&", |N<const. and |N]!|<conmste'™, |¢ =R(8,¢).

Here note that we can obtain the estimates above for any constant & given by
Proposition 6 because 6t > 0 (#£0) and |a| — rj — o+ (a(jo) — gj) < 0 (#0) when
(jo) ¢ I'.  Since

Jseoo

d
’ < Sl—m

d _1 d
70 70 N(0,&) 70 A;(8, &)

N,(0,&) ™"

m
< const.gl™ (1 + Z
=1

d
Ty A‘](ev 60)

d -~ m
— 8:(0,¢) < {const.s|§ls + const.e' ™ (1 + Z o

a0 £
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then
o! m

Se(0, &) < exp “ {const.s|§|s + const.e!™ ( Z (8, &) )} S:(0,8).
& =1

By Lemma 5,

S:(0, &) < exp{const.(¢|&]* +&™™)}5,(0, &).

Thus, for the constant @, we can take a small constant ¢ such that the following
energy estimate holds:

S:(0,¢) < exp (KO'|¢|" + const.)S, (6, &),
(6,9 16,67 x {£ e R"; |¢] = R(9,2)}.
Replacing the estimate above by i, we obtain (16).

Proof of Proposition 3. For the constants f; (1<i<N) given by
Proposition 6, put T = minj<;<y f;; Then we can choose a common constant
T for the energy estimates corresponding to the vertexes P; (1 <i< N) and
the sides PiP;;; (1 <i< N —1) of the Newton polygon. First, note that, by
simple computation, there exists a positive constant Cy such that for any
solution #(t, &) of (11),

A7) D ole e 8l < Co Y 1ou(0,8), (1€ [0, T¢I D] x R™.
j=1 j=1

Combining Proposition 6, Proposition 7 and (17), we get the following estimates:
there exist positive constants C, y and M such that for any solution (¢, ¢) of
(11),

m i—1
(18) > lof e, &) < C!élyexp[— D KT - 3K

j=1 v=0

% {t1+q,- _ (T—llfl—di")1+qi}

> 18 "a(0,9),
=1

(t,8) e [T7YE| ™, TIE| ™) x {£e R )¢ = M},  1<i<N,

(19) D18 "ar, &)l < CJ¢)” exp (— > KVT“‘”léls") > 1ol ta(o, ¢)l,
j=1 v=0 j=1

(t,8) e [TIE]™, T e ™ | x{Ee R || = M}, 1<i<N-1,

where gy = —1, so =0 and K, is some real constant.
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If te[T71E7%, T)E "] (1 <i<N), then
g g™ = (| EP) (e P,
(g 2 (T T = T
If te[T|E]™, T-1¢|™%] (1<i<N-—1), then
TIHa(E|™ = (v |EP) (e~ mam T g ),
t—l—qN T1+q,»|£|s,-—p > (T—llél—a;f)—l-—qw T1+qi|€|5i—l7 > T2+¢1i+4N.

Hence, by the inequalities (17), (18) and (19), there exists a positive constant p
such that

(20) > 18 Ma(e, &) < ClE|” exp {—ptTEPY > |8l 1(0, &),
j=1 - =l

(t,£) € [0, T] x {¢ e R [¢| = M},

that is, we get the inequality (12).
Theorem 2 immediately follows from Proposition 3 and the following
well-known theorem due to I. G. Petrowsky [1].

Petrowsky’s theorem A. Assume A.1. Then the Cauchy problem (1)—(2) is
H®-wellposed if and only if there exist two positive constants C and 1 such that
for any solution u(t, &) of (11),

Q1) Dl < &' 16a0,8), (1,8 €0, T] x R
j=1 j=1

4. Uniform H *-wellposedness

Consider the non-homogeneous Cauchy problem instead of (1)—(2):
(22) L(t, x, , 0x)u(t,x) = f(t,x), (t,x) € [to, T] x R",
(23) 6{“1u(t0, x) = ¢;(x), 1<j<m.

Following I. G. Petrowsky [1], we introduce

Definition 8 (uniform H®-wellposedness). We say that (22)—(23) is uni-
formly H*-wellposed, if for any

9;(x) e H°(R"), 1<j<m, €0, T), f(t,x) e CX([0, T]; H®(R™)),

there exists a unique solution u(t, x)e C*([ty, T1; H*(R") of (22)—(23).
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Y
10......e. J_PQ
8l.......0 . i
6| 1
1 2 3

Concerning the uniform H®-wellposedness, we know

Petrowsky’s theorem B. Assume A.1. Then the Cauchy problem (22)—(23)
is uniformly H>-wellposed if and only if there exist two positive constants C and
I such that for any solution u(t,&) of (11),

(24) Y ole N, o) < €Y 1o at, &), (4,9 e [to, T] x R,
j=1 j=1

where C and | are independent of tg.

The assumption A.1-A4 are not sufficient for the uniform H®-
wellposedness. The following example is due to K. Kitagawa [8].

Example. Consider the operator
L(t, 8, 0x) = 0, — 05(¢20% 4 2602 + 1) — 202,

Drawing the Newton polygon, we see easily that the conditions (9) and (10) are
satisfied. Then, for the operator, the Cauchy problem (1)—(2) is H*-wellposed
for sufficient small T > 0, however, is not uniformly H®-wellposed. In fact,
following to K. Kitagawa [8], putting t=1/é(é—1) and to=1/¢(E+1)
(¢ > 1) for the solution of the equation

(8 + E8 (284 — 282 + 1) — £2E¥)i(t, &) = 0

with datum at t = t;, we have
- 1 VEED 62 2 2,8 ]A( 1 >
- = — -1 -
u<5(5— 1)’€> P Ul/c(m){ S -7+ rC &(&+ 1)’f

B 48 X 1
oo s e )

implying that the Cauchy problem is not uniformly H*-wellposed.
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Now, replace the assumption A.4 by the following one:
Ad

(25) Re Ap(t, &) <—6i¢]", (4,&)e(0,0)x R, 1<i<N-1, 1<k<m.
Then, it is easy to obtain the estimate (24). In fact, setting § = t|£|“"+, we have
(26) ReAw(0,&) <—b;, (0,&)e(0,00)x 8™, 1<i<N-1, l<k<m

and, in the same way as the proof of Proposition 6, we can get the following
energy estimates instead of (16):

> 1a (e, €)] < CO)IEM exp [-3KiIE" (el ) — 0}

j=1

x Y 1ol a(@4¢) =, o),
=1 :

(t,8) € [0:¢]77F, 071" | x {Ec R |¢| = R(®)}, 1<i<N-1.
Thus we obtain

Theorem 9. Suppose A.1-A.3 and A4'. Then there exists T >0 such
that the Cauchy problem (22)-(23) is uniformly H®-wellposed.

5. Proof of lemmas

Proof of Lemma 4. Put A, = A= (aj,a,,...,a,). Let 1 be one of A
and x = ¥(xy,x,...,%s) an eigenvector corresponding to it. Then A,x = Ax,
that is,

aixi +x2 = Ix
az1xi +x3 = I
<
Am-1,1X1 +Xm = AXm_1
\ amX1  +amX2 +amXs 0 +0mmXm =  AXm

If we assume x; =0, then x =0, thus we can choose an eigenvector x =
H(1,Xx2,...,%m), Wwhere xj1=Ax;—ap (1<j<m—1). Now put ¢=

j
Yo,...,1,...,0) and N, = (x,x+¢€3,...,X+¢€,) = (ny,...,0y), then
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det Np, = det (x,e3,...,em) =1,
AmNp = (AnX, ApX + Apes, ..., ApX + Apen)
=AX,...,X)} + (0,az,...,am).

Each column vector a; (2 <j<m) is a linear combination of my,...,ny, as
follows:

a; = €1 + dp2m

= (nl — i x]'ej) + amZ(nm - l’ll)

=2

m

=m — Z x]'(nj - ll]) =+ am2(nm - l’ll)
=

m m—1
<Z xj— am2> n — Z X0 + (—Xm + Gm2) Dy, (x1=1)

j=1 j=2
aj = €j—1 + Amjem

= —(1+ amj)ng + Dj_1 + Gyl B<j<m).

Thus
A A+E;."=1xj—am2 A=1l—ayu -+ A—1—ayy
0 —X) 1 (0]
AmNp = Ny, K .
0 — X1 0 1
0 —Xm + A2 m3 cet Onm

A *

0 Am—l
(aj, Ax) and the (m—1) x (m — 1) matrix A, has the same form with A4,.
Now we use induction on m. The claim is trivial for m = 1; assume it is true

Then, set Dy = N '4uNp E( ), where * denote polynomials in

A
for m—1 (m>2). Now put A=4;. Since N, 'AnNy = (01 A* >, there
m—1

exists an (m—1)x (m—1) matrix Np_; such that N,';Aw_1Nm1 =
A * 1

Put T=
" (0

0
. ) and N¥ = N,T, then N} 'A,N}, =
0 ﬂ Nm—l
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/11 *

1 0 M * 1 0 _ )
(0 N,;ll)<0 Am—l>(0 Nm—1> B i
0] Am
Thus N, satisfies the conditions (i)-(iii).

Proof of Lemma 5. Let A{t) be one of the continuous roots of the
equation P(4,t) =0. Write A(t) = x(t) +iy(¢t) and P(x+iy,t) = Pi(x,y,t) +
iPy(x,y,t), where Pi(x,y,t) and P»(x,y,t) are polynomials in (x,y,t) with real
coefficients. Hereafter consider the polynomial ring R[x,y,t] with coefficient
field R. .

First, we show that the resultant Q(y,t) = R(Pi(,,y,t), P2(-,y,1)) #0,
which is, by the Euclidean algorithm and Gauss’ lemma, equivalent to that
Pyi(x,y,t) and P,(x,y,t) have no common divisor as a polynomial including
x. Consider in the case m = even. We can also show in the case m = odd in
the same way. Put

Pi(x,y,t) = Pi(x) = x™ + p1x™ L+ pox™ 2+ - + D,

Pz(x, ¥, t) = Pz(x) = qlxm—1 + qzxm_z + -+ gm,

then
<j—-1 (j=o0dd) =j (j = odd)
order, p;(y,t) i i ) order, g;(y,t) . .
=j (]zeven) S]——l (]ZCVCH)
and
1 pr p2 - DPmi1 Pm
1 po p2 * DPm1 Pm
1 Pt P2 *** Pm-1 Pm
2t =|a1 4@ - dm-1  Gm
/S V) v m-1 4m
q1 q2 o dm-1 9m

Denoting the highest order terms of p;(-,) and those of ¢;(-,¢) by p/(-,t) and by
qj(-,t) respectively, by simple computation, we have
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1 0 pﬁ’ 0 p";
1 0 p -0 pg
1 0 p2 --- 0 p°
the highest order 0 0 ? "
= |41 0 A1 0
term of Q(-, 1) R 0
@9 0 - g, O
g9 0 - gqny O

Now put (x+iy)" = P?(x,y) + iP§(x,y) and Q°(y) = R(P?(-,y), P4(-,y)), then
the determinant above is just equal to Q°(y). Thus, “the highest order term of
O(-,t)” = Q°(:). The fact that P?(x,y) and P§(x,y) have some common divisor
as a polynomial including x is equivalent to that Q°(y) = 0. By the theorem on
unique factorization in prime elements in polynomial ring, it is obvious that
P?(x,y) and P$(x,y) have no common divisor including x. Thus Q°(y) #0,

that is, Q(y,t) # 0. i
Second, we take out values of ¢ such that I y(t) does not exist in

te(a,b). By the theorem on implicit function, if 6% Oy, 1) #0,

d . (00 /30
E;J’(t)——(a—t 6_y)

i, 0
Then we take out values of t satisfying 5; (y,t) =0. We can assume that

Q(y,t) is irreducible without loss of generality. Consider the simultaneous
equations:

Q(y’ t) =0

0
a_yQ(yat) =0

Now put T(¢t) = R(Q(-,t),% Q(-,t)). T°(t) is a polynomial in ¢ with real

coefficients, whose degree is depending only on m and n. If T°(t) =0, then
Q(y,t) is reducible, thus T°(t) # 0. Then denote the zeros of T°(t) in t € (a,b)
by t{,t3,...,tf,, where the integer I° has an upper bound depending only on m
and n. Putting

A°:tg=a<t] <. <t <th 4 =D,
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then we have

20=-(2 /D) ec @ manm,  1sksr

d
Next, we take out values of t such that 77 y(t) changes the sign in

t € (a,b). By the theorem on implicit function, if % y(t) = 0, then g Q(y,t) =0.
Then consider the following simultaneous equations:

Q(y,1) =0
2o =0

Putting T*(t) = R(Q(-,t),% Q(-,t)), in the same way as T°(t), we denote the

zeros of T*(t) in te (a,b) by t{,t3,...,t}, where the integer I* has an upper
bound depending only on m and n. Put

A" tg=a<ti <<t <t 4=b
and

A=A4°Ud* p=a<hi < - <fH<ty1=b (lSlo-!-l*),

then % y(t) is continuous and of definite sign in ¢ € (t, tx+1) (0 <k <1). Thus

J: *d—t)’(

Then there exists a positive constant Cy = Cy(m,n,a,b, M) such that

[l
o | dt

In the same way, there exists a positive constant C; = Cy(m, n,a,b, M) such that

[|a
. |at

Hence the inequality (14) holds.

[ & voar = }]ﬂml )| < 2 max O] (1+1),

77

I
t)‘dt =Y
k=0

y(t)|dt < C1(m,n,a,b,M).

x(t){dt < Cy(m,n,a,b,M).

Acknowledgement. The author wishes to thank Professors K. Kitagawa
and K. Igari for their valuable suggestion and advice.



468

(1]

(2]
£3]
[4]
[5]
[e]

(7]

[8]

Masahiro Mikamt

References

Petrowsky, I. G., Uber das Cauchysche Problem fiir ein System linearer patieller Differential -
gleichungen in Gebiete der nichtanalytischen Funktionen, Bull. de I'Univ. d’Etat de Moskau.,
2 (1938), 1-74.

Mizohata, S., Le probléme de Cauchy pour les équations paraboliques, J. Math. Soc.
Japan, 8 (1956), 269-299.

Oleinik, O. A.,, On the smoothness of the solutions of degenerate elliptic and parabolic
equations, Sov. M. Dokl., 6 (1965), 972-976.

Miyake, M., Degenerate parabolic differential equations—Necessity of the well-posedness of
the Cauchy problem, J. Math. Kyoto Univ., 14 (1974), 461-476.

Igari, K., Well-posedness of the Cauchy problem for some evolution equations, Publ. Res.
Inst. Math. Sci, 9 (1974), 613-629. .

Kitagawa, K., Sur des conditions nécessaries pour les équations en évolution pour gue le
probléme de Cauchy soit bien posé dans les classes de fonctions C* I, J. Math. Kyoto Univ.,
30 (1990), 671-703.

Kitagawa, K., Sur des conditions nécessaries pour les équations en évolution pour gue le
probléme de Cauchy soit bien posé dans les classes de fonctions C* II, J. Math. Kyoto
Univ., 31 (1991), 1-32.

Kitagawa, K., Sur le principe de Duhamel, Proc. Japan Acad., Ser. A-7 66 (1990), 222-225.

nuna adreso:

Fac'ulty of Engineering
Ehime University
Matsuyama 790
Japan

(Ricevita la 27-an de aprilo, 1995)



