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Introduction. Given a subset S of Z and a sequence I = (In)∞n=1 of
intervals of Z strictly increasing in length, let

b(S, I) = lim sup
|In|→∞

|S ∩ In|
|In|

and let
b(S) = sup

I
b(S, I) ,

where the supremum is taken over all possible sequences of intervals I. We
say S has positive Banach density if b(S) > 0. Here and hence forth for a
set B we allow |B| to represent its cardinality. We say a subset A of N is
intersective if for each subset S of N with b(S) positive the set A ∩ (S − S)
is non-empty. Here S −S denotes the set {x− y : x, y ∈ S}. In Section 1 of
this note we use ergodic theory to prove the following theorem.

Theorem 1. Let ψ be a polynomial with integer coefficients and let

Pψ = {ψ(p) : p a rational prime} .
Then a necessary and sufficient condition on ψ to ensure that Pψ is inter-
sective is that for each non-zero integer n, there exists another integer mn,
coprime to it , such that n divides ψ(mn).

Let
Nψ = {ψ(n) : n a positive integer}.

The fact that the set Nψ is intersective for any polynomial ψ with ψ(0) = 0
and mapping the integers to themselves is proved by H. Furstenberg [4,
p. 74], using ergodic theory. In the special case ψ(x) = x2, this had been
shown earlier by H. Furstenberg [3] and A. Sárközy [10] using ergodic theory
and analytic number theory respectively. Later, in response to a question of
P. Erdős, Sárközy [11] proved Pψ is intersective in the special case ψ(x) =
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x−1. His method in [11] is a more complicated version of the technique in [7].
This result of Sárközy’sand also Theorem 7 which follows are also obtained
in the work of T. Kamae and M. Mendès France [6] though by still further
different methods. It should be said Sárközy’s methods are quantitative in
that if SN denotes S ∩ [1, N ] lower bounds are found for |A ∩ (SN − SN )|.
Our proof of Theorem 1 is a variant of Furstenberg’s approach.

Suppose M is a countable commutative monoid with binary operation
indicated by the plus sign +. SupposeA = {An}∞n=1 is a collection of subsets
of M and consider the following properties of A :

(i) if m < n then Am ⊆ An;
(ii) |An| is finite for each n and also tends to infinity as n does;
(iii) for each h in M

lim
n→∞

|An4(An + h)|
|An|

= 0 ,

where 4 denotes the symmetric difference and An+h denotes the set {k+h :
k ∈ An}; and

(iv) there exists K > 0 such that |AnA−1
n | ≤ K|An| for each n, where

AnA
−1
n denotes the set

{k ∈ An : k + l ∈ An for some l in An} .

We introduce two notions of density on M associated with A. Given a
subset E of M , for A satisfying conditions (i) and (ii) we say

d∗A(E) = lim sup
n→∞

|E ∩An|
|An|

,

denotes its upper density along A. If the above limit exists we say E has
density along A denoted by dA(E). We say a set E contained in M has
positive upper Banach density on M if there exists a collection of subsets A
of M satisfying (ii) and (iii) such that

b(E,A) = lim sup
n→∞

|E ∩An|
|An|

> 0 .

Let b(E) = supA b(E,A) where the supremum is taken overall collections
of subsets A satisfying (ii) and (iii). We refer to b(E) as the upper Banach
density of E along A. In Section 2 we prove the following theorem:

Theorem 2. Suppose the subset E of M has positive Banach density
b(E). Then if A satisfies conditions (i)–(iv) there exists a subset R of M
with dA(R) ≥ b(E) such that for each finite subset {n1, . . . , nk} of R we
have

b(E ∩ (E + n1) ∩ . . . ∩ (E + nk)) > 0 .
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The existence of dA(E) is part of the statement of Theorem 2. In the spe-
cial case where M = Z and A is given by An = [1, n]∩Z (n = 1, 2, . . .) Theo-
rem 2 was proved by V. Bergelson in [1]. His proof depends on G. Birkhoff’s
pointwise ergodic theorem. The extension to Theorem 2 is made possible
by the generalisation of Birkhoff’s theorem due to A. A. Tempel’man [7,
p. 224]. Besides Bergelson’s theorem, there are a variety of contexts to
which Theorem 2 applies. We mention three.

(a) M = Zm for some natural number m, with A given by An = Cn∩Zm
(n = 1, 2, . . .) where Cn is a bounded convex subset of Rm tending to infinity
in all directions as n does.

(b) M = Z with A given by An = [1, n] ∩ Z
⋃∞
k=1[dk, ek] (n = 1, 2, . . .),

where (dk)∞k=1 and (ek)∞k=1 are strictly increasing sequences such that dk−1 =
O(ek).

(c) M = D2 where D2 denotes the dyadic rationals in [0, 1) with addition
modulo one and A given by

An =
{
a1

2
+ . . .+

an
2n

: ai ∈ {0, 1}
}

(n = 1, 2, . . .) .

Note that in example (b) if ek = o(dk) and (ak)∞k=1 denotes
⋃∞
k=1[dk, ek]

then

lim
N→∞

|(ak)∞k=1 ∩ [1, N ]|
N

= 0 .

This means that even in Z Theorem 2 gives more information than in Bergel-
son’s theorem. If M1 and M2 with systems of subsets A1 = (A1,n)∞n=1 and
A2 = (A2,n)∞n=1 respectively satisfy conditions (i)–(iv) then so does the di-
rect product monoid M1 × M2 with the system of subsets A = (A1,n ×
A2,n)∞n=1 where A1,n×A2,n denotes the Cartesian product of A1,n and A2,n

(n = 1, 2, . . .). This last remark and the fact that the examples (b) and
(c) satisfy (i)–(iv) are readily justified and their verification we leave to the
reader. The fact that example (a) satisfies (i)–(iv) is verified in [8].

1. Suppose (X,β, µ) is a probability space and suppose the measurable
transformation T : X → X is measure preserving, that is, µ(T−1B) = µ(B)
for each B in β. Here T−1B denotes {x ∈ X : Tx ∈ B}. We say a subset A of
N is a set of (Poincaré) recurrence if for each B in β with µ(B) positive, there
exists m in A such that µ(B ∩ T−mB) is positive. The proof of Theorem 1
is transformed into a problem in ergodic theory by the following result [2].

Theorem 3. A subset A of N is a set of recurrence if and only if it is a
set of intersectivity.

For a real number x let 〈x〉 denote its fractional part. To complete the
proof of Theorem 1 we need the following subsidiary result.
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Theorem 4. If α is irrational , θ(x) is a non-constant polynomial with
integer coefficients and for coprime integers c and d, (qk)∞k=1 are the primes
congruent to c modulo d, then (〈αθ(qk)〉)∞k=1 : is uniformly distributed mod-
ulo one. Equivalently by Weyl’s criteria

(1) lim
N→∞

1
N

N∑
k=1

e2πihαθ(qk) = 0 ,

for each h in Z \ {0}.
Let

θ∗(x) = αkx
k + . . .+ α1x+ α0 ,

with at least one of α1, . . . , αk irrational, then using the same method as that
used to prove Theorem 4, we can actually prove (〈θ∗(qk)〉)∞k=1 is uniformly
distributed modulo one. The proof is adapted from that used to show that
if (pk)∞k=1 is the full sequence of rational primes, (〈θ∗(pk)〉)∞k=1 is uniformly
distributed modulo one [9].

Because θ has integer coefficients, in proving (1) we may assume without
loss of generality that h = 1. The first lemma we need is Dirichlet’s theorem
on diophantine approximation.

Lemma 5. Suppose α is irrational. Then for each Q ≥ 1, there exists a
rational ξ = a/q with (a, q) = 1 and 1 ≤ q ≤ Q, such that

|α− ξ| ≤ 1
qQ

.

Let Q = Nk(logN)−u with N large, u > 0 and k the degree of θ. Also
for the rational ξ in reduced form a/q let

M

(
a

q

)
=

{
α ∈ [0, 1) :

∥∥∥∥α− a

q

∥∥∥∥ < 1
qQ

}
,

where ‖a1 − a2‖ = min(|a1 − a2|, |a1 + 1 − a2|). Let M =
⋃
ξM(ξ), where

the union is taken over all ξ = a/q with 1 ≤ q ≤ (logN)u. Classically the
sets M(ξ) are called major arcs and the connected components of [0, 1) \M
are known as the minor arcs. The following lemma, due to L. K. Hua [5],
proves (1) on the minor arcs.

Lemma 6. Let α = β + a/q with (a, q) = 1 and δ = |β|Nk. Then if
max(q, δ) ≥ (logN)u,∣∣∣∣ 1

πN,c,d

∑
1≤qk≤N

e2πiαθ(qk)

∣∣∣∣ ≤ C((logN)−ζ) ,

with ζ > 0. Here πN,c,d denotes the number of primes congruent to cmod d
lying in [1, N ].
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In Lemma 6 and henceforth C denotes an absolute positive constant not
necessarily the same at each occurrence. To prove (1) on the major arcs we
argue as follows. Let

TN =
∑

1≤qk≤N

e2πiαθ(qk) (N = 1, 2, . . .)

with α in M and let

RN =
∑

1≤qk≤N

e2πiaq
−1θ(qk) (N = 1, 2, . . .)

with R0 = 0. This means that

TN =
∑

1≤n≤N

e2πiβθ(n){Rn −Rn−1}

=
∑

1≤n≤N−1

Rn{e2πiβθ(n) − e2πiβθ(n+1)}+RNe
2πiβθ(N) .

By the Chinese remainder theorem the congruences x ≡ c (mod d) and
x ≡ m (mod q) have a solution x ≡ l (mod [d, q]) if and only if [d, q] divides
m−c. This solution is unique. Here [d, q] denotes the least common multiple
of the natural numbers d and q. As a consequence we have

RN = e2πiaq
−1θ(c)πN,l,[d,q] +O(1) .

The prime number theorem for arithmetic progressions says

πN,l,[d,q] =
πN

φ([d, q])
+O(Ne−C(logN)1/2

) .

Here πN denotes the number of primes in [1, N ] and φ denotes the Euler
totient function. This means TN = T1 + T2 where

T1 =
e2πiaq

−1θ(c)

φ([d, q])

( ∑
1≤n≤N−1

πn{e2πiβθ(n) − e2πiβθ(n+1)}+ πNe
2πiβθ(N)

)
and

T2 = O
(
Ne−C(logN)1/2 ∑

1≤n≤N

|e2πiβθ(n) − e2πiβθ(n+1)|+ 1
)
.

Now because

|e2πiβθ(n)e2πiβθ(n+1)| ≤ C|β||(θ(n+ 1)− θ(n))| ,
and because θ(n+1)−θ(n) does not change sign for large enough n we have

T2 = O(|β|Nk+1e−C(logN)1/2
) ,

which on the major arcs is

= O(Ne−C(logN)1/2
) .
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In addition summation by parts gives

T1 =
e2πiaq

−1θ(c)

φ([d, q])

( ∑
1≤n≤N−1

{πn − πn−1}e2πiβθ(n)
)
.

So, using the fact from elementary number theory that q(log log q)−1 =
O(φ(q)), we have

TN =
1

φ([d, q])
O

( ∑
1≤n≤N

{πn − πn−1}
)

= O

(
πN

log log q
q

)
.

Now note that for ξ which is rational, the major arc centred on it gets smaller
as N tends to infinity. This means that if α is in the major arc centred on
ξ = a/q then q = q(N) tends to infinity as N does. Thus TN/πN,c,d tends
to zero as N tends to infinity on the major arcs, completing the proof of
Theorem 4.

P r o o f o f T h e o r e m 1. Sufficiency of conditions on ψ. By Theorem
3, it is sufficient to show that if (X,β, µ) is any probability space and T :
X → X is any measurable and measure preserving transformation of it, for
any B in β with µ(B) > 0 there exists m in Pψ such that µ(B∩T−mB) > 0.
To do this we argue as follows.

For f in Lp(X,β, µ) (p ≥ 1 ), let U : Lp → Lp be the Koopman unitary
operator defined by Uf(x) = f(Tx). If 〈 〉 denotes the standard inner
product on L2 then (〈Unf, f〉)∞n=1 is a positive definite sequence, hence by
Bochner’s theorem, there exists a measure wf , dependent on f , on the unit
circle T such that

〈Unf, f〉 =
∫
T
zn dwf (z) (n = 1, 2, . . .).

Now for each natural number N , (1/N)
∑N
n=1 z

n equals 1 if z does, and it
tends to 0 for all other z on T as N tends to infinity. This means that if

Anf(x) =
1
N

N∑
n=1

f(Tnx) (N = 1, 2, . . .) ,

then 〈ANf, f〉 tends to wf ({1}) as N tends to infinity. By the mean ergodic
theorem however, for f in L2, if ΠT f is the projection of f onto the T -
invariant subspace of L2, then ANf tends to ΠT f in both L1 and L2 norms
as N tends to infinity. This means that 〈ΠT f, f〉 = wf ({1}) and so, by
Cauchy’s inequality,

(2) wf ({1}) = 〈ΠT f, f〉 = 〈ΠT f,ΠT f〉 ≥
∣∣∣ ∫

ΠT f dµ
∣∣∣2 =

∣∣∣ ∫
X

f dµ
∣∣∣2 .
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Let Ls (s = 1, 2, . . .) be the subset of Pψ of elements which are multiples
of the least common multiple of the first s positive integers. In addition, let
Ls,n = Ls ∩ [1, n] (n = 1, 2, . . .) and let

Fk = {a/q : 1 ≤ a < q ≤ k, (a, q) = 1} (k = 1, 2, . . .)

(that is, the k th Farey dissection). Let F ck denote the complement of Fk
in Q ∩ (0, 1) and finally let wt = wr + wi denote the decomposition of wf
into a part with only atoms at the rationals and a part with no atoms at
the rationals respectively. Then for any positive v

〈Uvf, f〉 =
∫
T
zv dwi(z) + wr({1})

+
( ∑
a/q∈Fk0

+
∑

a/q∈F c
k0

)
e2πiavq

−1
wr({e2πiaq

−1
}) ,

where k0 = k0(ε) has been chosen so that the second sum on the right is
less than ε > 0 in absolute value. This means that

1
|Lk0,n|

∑
v∈Lk0,n

〈Uvf, f〉 = wr({1}) +
∑

a/q∈Fk0

wr(e2πiaq
−1

)(3)

+
∑

a/q∈F c
k0

wr({e2πiaq
−1
})

(
1

|Lk0,n|
∑

v∈Lk0,n

e2πivaq
−1

)
(4)

+
∫
T

(
1

|Lk0,n|
∑

v∈Lk0,n

e2πivα
)
dwi(e2πiα) .(5)

Let s∗ denote the least common multiple of the first s natural numbers
and let

Ms,n,r = {ψ(p) : prime p ≡ r (mod s∗)} ∩ [1, n] .

Because of the assumptions on ψ in the statement of Theorem 1,

Ls,n =
⋃
r∈gs∗

Ms,n,r ,

where gs∗ denotes the non-empty set of reduced residues mod s∗ such that
ψ(r) ≡ 0 (mod s∗). This means that∑

v∈Lk0,n

e2πivα =
∑
r∈gk∗

0

∑
v∈Mk0,n,r

e2πivα ,

which using Theorem 3 is

= o
( ∑
r∈gk∗

0

|Mk0,n,r|
)

= o(|Lk0,n|) .
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Thus (5) tends to zero as n tends to infinity. In addition the expression (4)is
less than ε in absolute value. Hence if we set f = χB (the characteristic
function of B), using (2) we obtain

lim inf
n→∞

1
|Lk0,n|

∑
v∈Lk0,n

µ(B ∩ T−vB) ≥ µ2(B)− ε

as required.
Necessity of the conditions on ψ. For fixed positive integers n and l and

each positive integer k (k = 1, 2, . . .) let S ≡ knZ+ l. Clearly S has positive
upper Banach density, thus if Pψ is intersective it contains infinitely many
non-zero multiples of n. This means that there are primes p such that n
divides ψ(p) with p strictly greater than n. So that on setting mn to be one
such prime p we have shown that the intersectivity of Pψ implies ψ satisfies
the conditions on it in Theorem 1.

Examination of the first part of the proof of Theorem 1 shows that the
only property of (ut)∞t=1 = Pψ used is the following fact. For each natural
number s there exists an infinite sequence (us,t)∞t=1 of multiples of the least
common multiple of the numbers {1, 2, . . . , s} contained in (ut)∞t=1 such that
for each irrational real number α we have N−1

∑N
t=1 e

2πius,tα tending to
zero as N tends to infinity. In consequence, any sequence (ut)∞t=1 with this
property is intersective. As a result if, instead of Theorem 4, we use the fact
that (〈θ∗(n)〉)∞n=1 is uniformly distributed modulo one[12], we get a virtually
identical proof of the following theorem.

Theorem 7. Let ψ be a polynomial with integer coefficients and Nψ =
{ψ(n) : n ∈ Z}. Then Nψ is intersective if and only if for each non-zero
integer n, there exists an element mn of Nψ such that n divides mn.

2. The proof of Theorem 2 hinges on the following form of an ergodic
theorem of A. A. Tempel’man.

Theorem 8. Suppose {Tm}m∈M is a countable commutative monoid un-
der composition of measurable measure preserving transformations of the
measure space (X,β, µ) indexed by elements m of the countable commutative
monoid M . Suppose A is a collection of subsets of M that satisfy conditions
(i)–(iv). Then for each integrable function f on (X,β, µ) we have

lim
n→∞

1
|An|

∑
m∈An

f(Tmx) = f∗(x) ,

and for each m ∈M , f∗(Tmx) = f∗(x) µ -almost everywhere,with∫
X

f∗(x)dµ =
∫
X

f(x) dµ .
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By {Tm}m∈M being a monoid under composition we mean that for each x
in X we have Tm1(Tm2(x)) = Tm1+m2(x).

To prove Theorem 2 we use the following result which is a straightforward
generalisation of a result of V. Bergelson [1] produced here for completeness.

Theorem 9. Suppose {Tm}m∈M is a countable commutative monoid of
measure preserving transformations acting on the probability space (X,β, µ).
For B in β with µ(B) = a > 0 and for each m in M let Bm denote TmB.
Then if A satisfies (i)–(iv) there exists a subset R of M with dA(R) ≥ a
such that for each finite subset F of R we have µ(

⋃
m∈F Bm) > 0.

P r o o f. For finite subsets F of M let BF =
⋂
m∈F Bm. Let C denote the

necessarily countable set of products of finitely many characteristic functions
of the form IBm

. For each function f in C let Nf denote the set {x :
‖f(x)| > ||f ||∞} and let N =

⋃
f∈C Nf . Now if (X \ N) ∩ BF 6= ∅ then

µ(BF ) > 0 because if x is in (X \ N) ∩ BF , letting f =
∏
m∈F IBm and

assuming µ(BF ) = 0 we have ||f ||∞ = 0. This means x is in Nf , which
is a contradiction. Thus removing N from X if necessary, we may assume
without loss of generality that if BF 6= ∅ then µ(BF ) > 0.

By Tempel’man’s theorem

lim
N→∞

1
|AN |

∑
m∈AN

IBm
(x) = f∗(x)

with f∗(Tmx) = f∗(x) for eachm inM µ-almost everywhere and
∫
X
f∗(x)dµ

= a. Because (X,β, µ) is a probability space there exists an x0 in X such
that f∗(x0) ≥ a. Let R be the set {m ∈M : x0 ∈ Bm}. It follows dA(R) ≥ a
and as x0 is in Bm for each m in R we have µ(BF ) > 0 for every finite subset
F of R.

We now complete the proof of Theorem 2.
By hypothesis there exists a sequence of subsets {CN}∞N=1 of M satisfy-

ing (ii) and (iii) such that

b(E) = lim
N→∞

|E ∩ CN |
|CN |

exists and is positive. Let Λ denote the set {0, 1} and let Ω denote ΛM ,
that is, the set of maps from M to Λ. By identifying IE , the characteristic
function of the set E in M , with its range we may think of ξ = IE as a
point of Ω. Let Tl be the shift on Ω defined by Tlx(t) = x(t + l). Now
let X denote the orbit closure of {Tmξ : m ∈ M} in Ω and let X0 denote
{x ∈ X : x(0) = 1}. If δx denotes the delta measure on the point x, for each
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natural number N let

µN =
1

|CN |
∑
m∈CN

δTmξ .

Because of the conditions (ii) and (iii) on {CN}∞N=1 there is a probability
measure µ supported on X and preserved by elements of {Tn}n∈M which is
a weak-star limit of the sequence of measures {µN}∞N=1. In addition, passing
to a subsequence of {Cn}∞n=1 if necessary, for every integrable function f on
Ω we have ∫

Ω

f dµ = lim
s→∞

∫
Ω

f dµNs
.

This means

µ(X0) = lim
s→∞

µNs(X0) =
1

|CNs |
∑

n∈CNs

δTnξ(X0) = b(E) > 0 .

By Theorem 9 this also means that

µ(X0 ∩ Tn1X0 ∩ . . . ∩ Tnk
X0)

= lim
s→∞

µNs
(X0 ∩ Tn1X0 ∩ . . . ∩ Tnk

X0)

= lim
s→∞

1
|CNs

|
∑

n∈CNs

δTnξ(X0 ∩ Tn1X0 ∩ . . . ∩ Tnk
X0)

= b(E ∩ (E + n1) ∩ . . . ∩ (E + nk)) > 0

as required.
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