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0. Introduction. In an article published in 1986 Jean Coquet ([C86])
proved that if so(v) denotes the sum of binary digits of v, then for each
integer k there exist 1-periodic bounded functions Fj, o, Fi 1, .., Fi r—1 such
that for any integer = one has, with [ = log, x,

(1) Y (s2(0)f = (U/2)F + Y U Fn(D).
v<zx h<k

The result in the case k = 1 was first established by H. Delange ([De75])
and has recently been generalized to the case of “f-expansion of positive
integers” with 6 an arbitrary real base > 1 ([GTi91]), with an o(1) correction
term; in this case the function Fj, o is shown to be continuous; so are Fj o
and Fj 1 in the case k = 2, for the binary expansion (see [C86] and [K90]).

Our first aim in this paper is to give a generalization of (1), including
the proof of the continuity of the functions Fj, 5, within the framework of
the so-called “numeration system associated with a substitution”.

More precisely, if o is a primitive substitution on a finite alphabet A
whose largest eigenvalue satisfies § > 1, and s/(v) denotes > 1| f(m;)
(where for v an integer, > ; [0*~'(m;)]| is the unique admissible represen-
tation of v, and f is a map from A* to R), then we prove the existence of a
real number « and 1-periodic continuous functions Fy, 5, (h =0,1,...,k—1)
such that for any = > 0,

(2) 2 (T W) =k Y PR +e()
v<z h<k

where lim,_, ., e(x) =0, and | = log x.
Moreover, we prove a similar formula for “moments of the sum-of-digits
function” in the form

(3) ) (T () —al)* = (2k—1)(2k—3)... 1855+ 1"Gr () +n(2)
v<zx h<k

where the real number (3 is explicitly determined and lim,_, o, n(z) = 0, the
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functions Gy, 5, being 1-periodic and continuous. For odd moments (2k—1 in
place of 2k on the Lh.s. of (3)) the first term of the r.h.s. of (3) disappears.

The functions Fj j, of (2) are shown to be nowhere differentiable when
a # 0 and a # f(w) (w being the empty word); the functions Gy, 5, of (3)
are also nowhere differentiable if § # 0 and a # f(w).

Note that the constants « and (3 (in the case a = 0) of the formu-
lae (2) and (3) were previously determined (in [D90]) by another method,
moreover, the special form of the moments of the sum-of-digits function is
clearly connected with the gaussian distribution of this function, and was
first conjectured by J. M. Luck ([L]); we hope to give a more precise state-
ment of this idea in a forthcoming paper.

The general framework of “substitutions on a finite alphabet” allows us
to study some mathematical models useful in theoretical physics; in some
of these cases we give the explicit values of the constants « and (3.

To return to the initial formula (1), we also note that when A = {1}
and o(1) =11...1 (¢ times one, ¢ an integer > 2), the substitutive numer-
ation coincides with the ordinary base ¢ numeration, and in this case the
remainder terms e(x) and n(z) of (2) and (3) disappear when z is an integer,
according to (1); moreover, we then have a = (¢—1)/2 and 8 = (¢*> —1)/12
(if ¢ = 2, the result for 3 agrees with that of P. Kirschenhofer ([K90]).

With the substitutive numeration system, one can also obtain expansions
of integers with respect to linear recurrences studied in [GTi91] (see also
[Sh88] and [B89]); we make explicit that connection, and give the values of «
and (3 in the last section. For instance, in the Fibonacci case o = (5—+/5)/10
(in accordance with [CV86]) and 3 = 1/(5v/5).

Finally, we note that in the case of ordinary g-adic expansion (¢ an
integer > 2) some asymptotic formulae involving the sum of digits can also
be obtained by other methods, issuing from analytic theory of numbers (cf.
[FG] and [MM]).

1. Numeration system and sums associated with a substitution.
Let o be a substitution on a finite alphabet A = {1,2,...,d}, i.e. a map
from A to A* \ w, the set of non-empty words of A; let M be the transpose
of its matrix (M, is the number of occurrences of b in ca); |m| denotes
the length of m € A*. We assume that M is primitive and that the word
o(1) has length at least 2 and begins with the letter 1. By the theorem of
Perron—Frobenius, there exists a unique eigenvalue 6 of M with maximum
modulus. As |o(1)| > 2, one has 6§ > 1.

We first recall a representation of integers ([DT89]) which we reset in
terms of automata. The state set of the prefix automaton is the alphabet A
of the substitution. The alphabet of the automaton is the set A’ of words
m such that Ja € A, m < ga. There is one arc from a to b with label m iff
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mb < ga. We write b = a-m. Every sequence (my,,...,m1), m; € A’, which
is the label of a path with initial state a is called a-recognizable. There are
exactly |0"(a)| a-recognizable sequences of length n.

Since 1 < (1), for each integer v > 1 there exists a unique 1-recognizable
sequence (My, ..., mq) such that v = Y"1 | |o*~!(m;)| and m,, is not empty;
this sequence is called the (admissible) representation of v.

For instance, a special case is the representation in the Fibonacci base
(Fo =1, F, =2, F;41 = F; + F;_1). Indeed, if o is defined by o(1) = 12
and o(2) = 1, then the m; are w (empty word) or 1, and |o*~*(m;)| is 0 if
m; = w, and F;_ if m; = 1; the prefix automaton recognizes the sequences
(mp,...,mq) such that m;1m; # 11 (see Fig. 1).

1

Fig. 1
The g-ary representation (g an integer, ¢ > 2) is another special case,
with the substitution defined on A = {1} by o(1) = 17 (see Fig. 2).

(1) ot

Fig. 2
We define the sum-of-digits function relative to a map f: A* — R by

sf(v) = Z fim;)  ((my,...,mq) being the representation of v).
i=1

A moment of order k is
S,i/\(a;) = Z (s'(v) — Mogyx)" for x € R% and k €N, X € R.
o<v<z

We will also use, for the computation of the asymptotic expansion of
SIJ; A (z), the vector V¥ defined by

(VE) o = Z (g(mn) +...+g(m1))*  for any a € A, n an integer > 1

Moy, M1
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(g defined by g(m) = f(m)—\; summation over all a-recognizable sequences

of length n),
e JO ifk#0,
(VU)“_{l itk =0;

and the matrix A%) defined by
Ef“ﬁ = Z g(m (sum over all m € A* such that mb < oa).

When f is a morphism and foo = f (this means f(mm') = f(m)+f(m')
and f(o(m)) = f(m) for all m,m’ in A*), one has

S,i/\(a:) = Z (f(uy...u,) — Alogy m)k,
O<v<z

1 being the fixed point of o extended by concatenation to AY, with
up = 1. Indeed (see [DT89]), if uj...u, = o™ 1(m,)...c%my), then
f(uy...u,) = s/ (v). Wenote that a formula for 3 f(u; ... u, ), with weaker
assumptions on f, was given in [DT91].

2. Computation of V*

LEMMA 1.
Vi, =MVE+ > < >A(’“‘h)V7f}.
h<k
Proof. From the definition of Vk we deduce
ViDa= Y. > (glmag1) + ...+ g(m))*
My41,0 Mn,y...;ma

(sum over (my41,b) such that m,1b < oa, and over my,, ..., my b-recogniz-
able). By the binomial formula,

(00mn12) oo gl ))* = 3 () 0lma i) g o g )

h<k
Thus
vk = h%:k (i) Al=nyh
As A = M, we obtain the assertion.
Remark 1. If £ = 0, this relation becomes V79+1 = MV?; hence
1
Vi=M"| | =(lo"(a))aea-
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Let
d/
P(X) =[x —65)~
j=1
be the minimal polynomial of the matrix M, with § = 6; > |03 > |6s]
> ... > |0g| and 0; # 0; for j # j'. The following lemma states that
the sequence V¥ = (VF), y satisfies a recurrence equation related to the
polynomial P(X)F+1.
Let S : (CHN — (CHYN be the shift (defined by S((p)nen) =
(mn-l—l)nEN)'
LEMMA 2. The sequence VF = (VF), oy satisfies (P(S))*TH(V*) = 0.
Proof. This is true for k = 0: by Remark 1, V? is the sequence n —
1 1
M™ | ‘|, hence P(S)(V?) is the sequence n — (P(M))M™ | : |; now
1 1
P(M) = 0. Suppose the lemma to be true for any h < k — 1. The formula
of Lemma 1 can be written as

k
ky _ k (k—h)yh
SWVFy =MVF+3 <h>A v
h<k

Applying (P(S))* and using the fact that (P(S))* commutes with any ma-
trix, we obtain

(P(S)* 0 8)(VF) = (P(S)*(MVF).
But (P(S))* oS = So (P(S))* and (P(S))*(MV*) = M((P(S))*(V*)), so
we have

S(Wky = MWk, where Wk = (P(89))k(VF).
We deduce by induction S*(W*) = M*W* for all i € N. Hence
(P(S)(W*) = (PO, ie. (P(S) (V) = 0W* = 0.
LEMMA 3. There exist polynomials pjiq(X) € C[X]| such that

() (Vo = X0y pjra(n)0] for any a € A,
(i) (VF)a = pira(n)0™ + O(n¥'|0a|") with k' = (k + 1)ag — 1,
(iil) p1xa(X) € R[X] and d°(p1ra) < k.

Proof. (i) Let V¥ be the sequence n — (V,F),. Lemma 2 implies
(P(S")F+1(VFa) =0, where S’ is the shift on CV. It is known that the ker-
nel of (P(S"))**! is generated by the sequences n — n'67, with 1 < j < d’
and [ less than the order of 6; in (P(X))**!, ie. I < (k+ 1)a;. In other
words, there exist polynomials pjx,(X) of degree at most (k + 1)a; — 1,

satisfying (i).
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(iii) We have

d/
(Vrf)a = (Vr{c)a = ijka(n)@ and ‘9_1 =0.
j=1

Using the unicity of the decomposition of V*:¢, we obtain pire(n) = pirae(n)
for all n € N, so p1xa(X) € R[X]. We have ay = 1 by Perron-Frobenius,
hence d°(p1xa) < (E+1) — 1.

Remark 2. For k = 0, the polynomial p1o,(X) has degree 0, i.e. it is a
constant €,. The relation (ii) becomes
(V9)y = ea0™ + O(n*2 1) .
Using Remark 1 we deduce

o= lim 07 "|c"(a)l.
n—-+o00

For every word m = a ... a,, we will denote by £(m) the sum Y . | &4,

3. Asymptotic expansion for S}: ()

PROPOSITION 1. There exist bounded functions Fyp : R — R with pe-
rtod 1 such that

k
SL(@) =2 ) 1"Fen(l) + O(er(l))  (as @ — +oo, with | =logy ),
h=0

1051 if [02] > 1, with k' = (k+1)ag — 1,
ee(l) = 1M if [6a] =1,
IF if 62 <1.

Note that in all cases ¢y (l) is o(z). The functions Fj, j are in fact con-
stants (cf. §5).

We first need a lemma about the representation, relative to a substitution
o, of real positive numbers.

LEMMA 4. For any x € R, there exists an integer n = n(x) and a

unique infinite 1-recognizable sequence (Mmy, My_1,...) such that
n
x = Z e(m;)0 1,
1=—00

my 18 not empty and mia; # o(a;11) for infinitely many i (with a; =
1-my -...-m;). We also have n(z) =logy x + O(1).

Proof. In [DT89], we define the representation of real numbers belong-

ing to [0,e(1)[. Now, if z € R%, define n(z) as the unique integer n such
that £(1)0" ! < x < (1)6". So x0~™ € [0,&(1)[ and has the representation
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™" = Z+Of e(p;)0~%. py is not empty, else x would be less than e(1)§m 1.

1=

Lemma 4 is thus proved with m; = p,—;4+1 Vi < n.

Proof of Proposition 1. We will define Fjj as a sum of two
functions F; kl p and F ,3 h-

In order to define these, we denote by by,(k,a) the coeflicients of the
polynomial pyj,(X) of Lemma 3, i.e.

k
Pika(X) = pr(k:, a)X?.

p=0

Given a real number I, z = 6 has, by Lemma 4, the representation

(1) r= Y elm)f!

1=—00

and we set x; = f(my) + ...+ f(mip2) — A — 1) for —oo < i <n—2. We

define
R =0 (5)steima (1) -0
(sum over —oo < ¢ <n—2and h <p<q<k)with
S i pra) = S (@i + F(m)* by (g, a)

(sum over (m,a) € A* x A such that ma < m;1).
We define F) ,3 5 just as I, kl n» With the condition —oo < i < n — 2 replaced
by —oo < i <n—1, and with S(z,1,p,q) replaced by

S'(a,i,p,q) = Y (f(m) = Al —1)*~by(q, a)

m,a

(sumover 1 <m < ma < o(l)ifi <n—2;over 1 <m < ma < m, if
i=mn—1). In these definitions, we assume that 0° = 1.
Then we estimate the sum

k
(2) z Y 1MFL ().
h=0

We replace F; kl,h(l) by its value and we sum first over h, 0 < h < p, then
over p, 0 < p < ¢q. We find that (2) is the sum of

p(i,q,m,a) = (S) (i + f(m))* " Iprga (06’

over —c0 <1 <n—20<qg<kand ma <m;q1.
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When ¢ > 0 and (for example) [ > 1, we use Lemma 3(ii) and the
estimate n =1 + O(1) of Lemma 4 to obtain

\m’, am,a) - (’;) (i + Fm)F V)| < (i + 1) 0,

with C' a constant independent of i and [, and ¢’ = as(q¢ + 1) — 1. When
i< —1land!l > 1, we have

i + f(m)] < C'lill - and  |p(i,q,m, a)] < C"1F79i|50"
with C” and C" constants. But Z?__OQ 1F=9(i41)7 |6, |" and Z;ﬁoo 1k=a|4|kg?

are O(pg(l)) as [ tends to +oo. Finally, (2) is equal to

k _
S (5w somy ), + 0
%,q,M,a
(sumover 0 <i<n—2,0<g¢qg<kand ma<miq).
Using the definition of (V,7), and the binomial formula, it is also equal
to

3) Y (@it f(m) +g(m)) + ...+ g(m})* + O(px(1)

; ’ ’
T, M.

(sum over 0 < i < mn —2 and my,...m;omm) ... m} l-recognizable, with
m < mi+1).

These 1-recognizable sequences may be interpreted as the representations
of all the integers v belonging to the interval {Ny, Ny +1,...,N — 1} (see
Section 1), with

Ny =o"" (mn)| and N = |o" " (mi)l;
i=1
and (3) as the sum
D W) =N+ 0@ (D).
N1<v<N

Now the representations of the integers v belonging to {1,2,...,N; — 1}
are the 1-recognizable sequences mm/ ... m/ such that 0 < ¢ < n — 2 and
1<m<o(l),ori=n—1and1<m < m,. We obtain

ey UFL) = Y (s7(w) =AD" +0(pr(D)).
h<k 0<v<N;

There remains to estimate ZN§V<I(8f(1/) — A)¥ (or ngy<N(8f(l/) -
A)* if 2 < N). This sum is O(I¥|N — z|). We have
N—z=) (o' (mi)] —e(m)"") +O(1),

i=1
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lot ™ (my)| — e(my)0™ = O(i°27|02]")  (see Remarks 1 and 2).
Hence I*|N — x| = O(pi(1)).
Fy 1, is bounded because |0~ (z;+ f (m))"~4(i—1)P~"0"| = O((n—i)*6'~")

and "2 (n — i)*0""" does not depend on n. In the same way, FZ, is

1=—00

bounded.

Periodicity. Let ' = [+ 1 and 2/ = 6. The representation of ' is
connected with that of x by n(z’) = n(x) +1 and m}, = m;_q fori <n+1;
so S(a',i,p,q) = S(x,i—1,p,q) and Fklﬁ(l +1) = Fklﬁ(l), and similarly for
Fk2 b

Remark 3. In the case where s/ is the sum-of-digits in the g-ary ex-
pansion (see Section 1), one has § = ¢ and #A = 1; so in Lemma 3, d’' =1
and (VF), = pira(n)q™.

The representation of real numbers in Lemma 4 (z = Y"1 e(m;)0"1)

coincides with their g-ary expansion. If x is an integer, m; is empty for ¢ < 0;
then in the proof of Proposition 1, we can replace the condition —oco < i by
0 <i. We obtain

k
S,J;)\(m) = leth,h(l) for any integer x > 1 and | = logy x .
h=0

4. Continuity

PROPOSITION 2. The functions Fy, j, are continuous on R.
Proof. Let S : [1,+00[— R be the continuous piecewise affine function
such that
S(n) = S,J;)\(n) for any n € N.
As S(z) = S,];)\(a:) + O(¢x(l)) we can replace, in Proposition 1, S,];)\(a:) by

S(z). Next we define, for 0 < h < k, the functions

k
1) Sen@)=S@) -z > "Fow(l) (v€[l,+oof, I =logyz).
h'=h+1
If h =k, then §kk(m) is equal to S(z), which is continuous.
We want to establish a relation between Sy, , and Fj, . We deduce from
Proposition 1 that

Sn(x) = 2" Fy (1) + O(afl" 1),
or, equivalently,

Fen(l) = 071078 1 (0Y) + O(J1]71) ;
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hence
Fen(l+n)=0"""1+n)""Sp 10+ O(l +n|™") forneN.

But Fj (I +n) = Fj n(l). Moreover, given a compact set K and ¢ > 0 we
have, for n large enough, |l +n|~! < ¢ for any [ € K. In other words,

Fin(l) = it +n)_h§k,h(«9[+”)) (uniformly on compact sets) .

lim
n—-+oo
By this relation and by (1), we obtain successively the continuity of Fj g,

Skk—1> Tk k=15 -+ Sk,05 Fr 0

5. The main result. We can specify the asymptotic expansion given in
Proposition 1, by computing Fj, (1) for the maximal h such that Fj, j, # 0.
We will use the eigenvectors of M. M is primitive, hence has a unique
row-eigenvector £ defined by

1
EM =0¢ and &

I
—_

1

The vector € = (£4)aeA is a column-eigenvector since, using Remarks 1 and
2, we have

1
e= lim oM™ ||,

n—-—+oo
1

hence Me = fe and £ = 1. We define the constant
a=0"" Z €af(m)ey  (sum over (a,m,b) € AxA* x A with mb < ga).

a,m,b
In the case A = «, we will also use
B=0"te(APe 4 24Wy)
where the vector v is defined, modulo Re, by
(0 — M)v = AWe,
(B does not depend on the choice of v, because
(1) 07 teAWe = — X,

which is zero in the case A\ = a. Such a v exists: consider the hyperplane
(61 — M)(R?) and the hyperplane orthogonal to £, which contains the vector
AWM¢ in the case A = a.

THEOREM. There exist continuous functions Fy, j, and Gy, with period
1 such that (as  — +00)
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ST o(@) = (a)*z + 2 3" 1" Fy (1) + O(pi (1)),

h<k
KB\ , -
f (k/2)! (?) T+ Z "Grn(l) +O(pr(l)) if k is even,
a(@) = h<k/2
z Z thk,h(l) + O(Sok(l)) if k is odd,

h<k/2
with | =logy x and (1) defined in Proposition 1.

The next lemmas concern the polynomial of Lemma 3(ii). By (ii) and
(iii) of that lemma, there exists a polynomial Py (X) = Zﬁ:o by (k) XP with
RY coefficients b, (k) such that

VE = 0"Py(n) + o(0").

Writing now the formula of Lemma 1 modulo o(6™), and using the fact that
two polynomials asymptotically equal are identical, we obtain

LEMMA 5.
OPc(n+1) = MPy(n)+ Y _ <:> A®=M P, (n).
h<k
Next we compute the term of degree k in Py (X).
LEMMA 6.
br(k) = (o — \)Pe.
Proof. This is true for k = 0 (see Remark 2). Suppose
(2) b_1(k—1) = (a— \)Fle.
Identifying the terms of degree k in the formula of Lemma 5, we obtain
0by. (k) = Mby (k) .

Thus by (k) is an eigenvector and there exists ¢ € R such that by (k) = te
(0 being a simple eigenvalue by Perron—Frobenius).

Identifying the terms of degree k¥ — 1 in the formula of Lemma 5, we
obtain

kb (k) + 0bg_1 (k) = Mbg_1 (k) + kAD b1 (k — 1)
and, multiplying on the left by £ and using £ = 1 and £EM = 6,
Okt + 06by_1 (k) = 0€b_1 (k) + k€AW b 1 (k —1).

Then we can compute ¢, and from (1) and (2) we obtain the assertion.
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LEMMA 7. If A = «, we have d°(Py) < [k/2] and

b2 (k) = Bre if k is even,
k!

(01 — M)byy, o (k) = B AWYe if k is odd, with B, = e <

Proof. For k = 0, this formula is the same as in Lemma 6. Suppose
k > 1 and the formula is true for 0,1,...,k — 1. Then, by Lemma 5, the
degree of the polynomial 0P (n + 1) — M Py(n) is at most k' = [(k — 1)/2].

Let p = d°(Py). If p > k' 4+ 2 we obtain, identifying the terms of degree
p and p — 1 in Lemma 5,

0b,(k) = Mb,(k) and  Opby(k) + 0b,_1 (k) = Mb,_, (k).

3\ +/2
3

By the same computation as in Lemma 6, we obtain b,(k) = 0, contrary to
p=d°(Pg).

Hence p < k' + 1. Identifying the terms of degree ¥’ + 1 and %’ in
Lemma 5, we obtain

Obyr41(k) = Mbgr41(K),
O(k' + 1)bgr 1 (k) + Oy (k) — Mby (k)
(3) kAW (k — 1) if & is odd,

-1
) kEAMby (k — 1) + wfl@)bk’(k —2) if kis even.

By the same computation as in Lemma 6, we obtain by/41(k) = 0 if k is
odd (using (1), (3) and by (k — 1) € Re by the induction hypothesis). Then
by (3) we obtain the value of (A1 — M)by (k) and prove the assertion of the
lemma for k.

If k is even we again have by (k) = te with ¢ € R and, multiplying (4)
by £ on the left,

APy (k—2).

-1
Ok + 1)t = kéAWby (k — 1) + %

By the induction hypothesis, the vector v = (1/8k_1)bg(k — 1) satisfies
(01 — M)v = A®M¢, and the vector by (k — 2) is equal to br—2)/2(k —2) =
Br_2¢. Using the definition of § we obtain the assertion.

Proof of the Theorem. We compute Fj, ;(l), replacing h by k in
the proof of Proposition 1. We obtain

Fklk(l) =0 Z br(k,a)0"  (sum over —oo < i <n —2and ma < m;yq)

i, m,a
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and, by Lemma 6,
n—2
Flp) =07 (a =" Z e(mi1)0" .

In the same way,

n—2
szk(l) =0 =\ ((s(mn) — (1) + Z (0 — 1)5—:(1)9i) )
Hence Fj 1(I) = (o — A\)* and we obtain the conclusion of the Theorem in
the case A = 0.

In the case A\ = «, we first compute Fj, 5, (1) for h > [k/2]. This condition,
together with h < p < ¢ < k, implies p > [¢/2]; then b,(q, a) is zero by
Lemma 7, and Fy ,(I) = 0. Next we compute Fy j/o(l) for k even. The
condition k/2 < p < ¢ < k implies p = ¢/2 = k/2, else p > ¢/2 and
by(g,a) = 0. The computation of Fj, j/2(l) is the same as that of Fj, x(I) and
leads to Fy, j/2(l) = B

Now we will check that the sum

Zlal@) = 30 (s (v) — alogyv)*
O<v<z
has the same equivalent as .S }:a(az) if k is even. This sum is studied in [D90]
and [GoL8T7].

COROLLARY. Z,f’a(ac) = O/ ) (with | = logyx), and if k is even,
then

k)2
Z,{,a(ac) = (kl;'Z)' <%> x4+ O 1),

Proof. It is sufficient to prove this for integer x. We have

Z,éa(ac) = Z (A + m)*  with A, = s/ (v) — ol and p, = alogy(z/v)

O<v<x

Ml
=slo+ 3 3§t

O<v<z =0

Thus, it is sufficient to prove that fori <k —T1and j <k, > o, Nl =
O(Il=1)/2lg). We remark that

SN = (- ) DA

O<v<z O<v<z v'=1
We deduce from the theorem that -7, _ X, = O(vIl//4?), and from the
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mean value theorem
1, = 1 = O, v).
Hence
(1) > Al =0 N u).
o<v<zx o<v<z
In the case 7 = 0 this estimate becomes
S =0 X w)
o<v<z o<v<z
and by induction > ,_, . #f, = O(z). Then we deduce from (1) that
> = O ).
o<v<zx

Remark. A more precise computation should give the existence of func-
tions Hy, ;, such that

A AN
2o = () ot @ 3 10+ 0ler()

for k even, and the same without the first term of the r.h.s. if k is odd.
The functions Hy j are related to the functions Gy of the Theorem

k/2 .
(and G /2 = %(%) ik even):

ot =t - (1) (227) 0) e

el
x f (logg v — )" 97""1Gy,_yr ;(log, v) dv
0

(sum over h < j <[(k—1)/2] and 1 < i <i <k —2j).
Of course Hy, j, is periodic and continuous, and differentiable iff G}, 5, is.

6. Nondifferentiability of F}, ; and Gy 3

PROPOSITION 3. If a # 0 and o # f(w), then the functions Fy,p, of the
Theorem are nowhere differentiable for h < k. If 3 # 0 and a # f(w), then
Gp,n are nowhere differentiable for h < k/2.

Proof. For fixed k and h < k, we define a mapping (z,l) — ¢, () from
R% xR to R such that, in the case v = 6!, ¢, (1) should be equal to xF}, (1)
(with Fj, 5,(1) defined in the proof of Proposition 1).

We set

n—1
ol) = 3 Guil)s Guill) = 65, (D) +67:(1),

1=—0Q
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1

k . _ql P . —honi
DI SR (4 [P ] (A TR
h<p<q<k ma<miyy
ifi<n-—2,
0 ifi=n-1
(where z; y, = f(my,)+...+ f(Mmit2) + f(m) depends on the representation
(M) —so<i<n of , but not on 7).

2 i(1) is defined in the same way as ¢, ;(I), with z; ,,, replaced by f(m),
and with the condition ma < m;y; replaced by 1 < m < ma < o(1), or
1<m<ma<m,ifi=n-—1.

il(l) is a polynomial in [ whose coefficients have absolute value less

than C(|i| + 1)*¢?, with C a constant independent of i and [. As the series
Znil (|i| + 1)*6" converges, we deduce that ¢, (l) is also a polynomial

1=—00
in {.
Suppose F}, 5, is differentiable at the point [; let x = 0'. Then z has a
representation my,my,_1 ... = (M;)—co<i<n by Lemma 4.
For any j < n, we define two real numbers u; and v; : u; has representa-

tion m,my—1 ... mij, and v; has representation m,,m,_1 ... mjw”*lawN.

Fix now v such that 0¥ (b)| > 2 for any b € A, and set a =1-m,, - ...

...omy - wY; then my, ... mjw”_lawN is 1-recognizable. We have

v; —u; = e(a)p? vt
Let
0 Fio,n (1) — ;i Fio n (1)

;= o (I5 =loggv; and I; = logg uy) .

This is the rate of variation of the function t — tFj, ,(logst) between the
points u; and v;. As j tends to —oo, u; —x = O(|v; — u,|); thus A; tends
to the derivative of this function at the point z.

We will deduce that the rate of variation

Vj — Uj

4

also has a limit. By the mean value theorem, there exists a real number l;’
between [; and [ such that

(5 —1;)¢l,,(17)
Uj — ’LLJ'

(where ¢, is the derivative of the function ¢t — ¢, (t)). We have
¢, (1) = ¢, (17) + O(|I — j[*67)

Aj— A=
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(since the representations of v; and x coincide between the indices j and n).
As j tends to —oo, ¢ () tends to ¢ (1), since ¢ is a polynomial. Thus
o (1) = ¢3(D), 4 — Aj — (xIn0)~'¢;,(I) and

Al — L= Fp(l) + (0) " Fy (1) = (xn0) ' ¢,(1).

Ay =cea)t ) (S) (@0 + (v =D f (@) = Al = j + v+ 1))k

X (2) bp(q,a)(j —v—1— 17"

Fixing j, we consider A; as a polynomial in v; its degree is at most k — h.
We compute the coefficient ci_j of the term of degree k — h; it is obtained
for p = ¢; using Lemma 6 and the binomial formula we obtain

Ch—h = (i) (f(w) —a)* (= \)"*  (independent of 7).

But this coefficient is also equal to (1/(k — h)!)Ak*h(A;-), where A is the
operator which associates with every polynomial P(X) the polynomial
P(X +1) = P(X). As limj_,_o A*"(A%) = AF="(L) = 0, we obtain
Ck—p — 0.

So if the function Fj, ; of Proposition 1 is differentiable, we have neces-
sarily a = f(w) or A = a.

In the case @ = f(w) a counterexample is given in [DTI1].

In the case A = «, we must prove that F} ; is not differentiable for
h < k/2 except in the cases o = f(w) or f = 0. We have seen (Section 5)
that by(q,a) is zero if p > ¢/2; hence A’ is a polynomial in v of degree at
most k — 2h, because k —qg+p—h < k—2p+p—h < k — 2h; the term
of degree k — 2h is obtained for p = h and ¢ = 2h. As h < k/2, k — 2h is
positive hence A*=2"(L) = 0.

We deduce that

0= lim AF2M(A}) = (k—2h)le(a)" < §

2h

j——o0

>(f(w) _ )2, (2h,a),

h
bh(2h7 (I) = T <§> E((I),
hence oo = f(w) or § = 0.

7. Application to the sequence (nw),>; for some quadratic w.
Consider the sequence € = (&,,),,>1 defined by

o]t if frac(nw/2) < 1/2,
" 1 =1 otherwise,
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where w is a quadratic number such that

1
w=——"7— with a; € N*, ay = 2v, v € N*.

ai +

as + w
Godreche, Luck and Vallet (|[GoL87]) asked about the asymptotic expansion

of
1 & a
1
N ngl <s(n) — ? logg n)

where s(n) = > & and 0 = ay(az + w) + 1.
We obtain (Section 5)

2

N 2

1 a

N g <s(n) - 71 log, n> = Blogy N + Hs o(logy N) + o(1)
n=1

with
g (0 — a1v — 1)(a?v + 3a; + 2v)
12a1v(arv + 2)
Indeed, the sequence € may be obtained from the substitution o on the
alphabet A = {1, 2,3} defined by
o(l) =m"1  (where m = 1“123“1_1) ,

o(2) =m* 13, o(3) =m”3

and the output function

f =1 f2)=rB8)=-1
(i.e. €5 = f(u;) where u; =1 and (u;);>1 is the fixed point of o).
This substitution is the same as the one of [GoL87], Section 4 (ag even),
upon replacing their letters a and ¢ by the letter 1, b by 2 and d by 3.
The matrix of o is

av+1 v (ap — v
M=o+l v+1 a+l)-v],
ayv v (ag—1v+1

the eigenvectors defined in Section 5 are here

1
1 0-1 1 -1
§:<—0 —1/——1—1/—9 > and ¢ o 1—1—%—L
1

2’ 2a, "9 2a, T 041

The condition f(o(m)) = f(m) (see Section 1) is satisfied. An easy calcu-
lation gives, for o and (3 defined in Section 5, & = a;/2 and [ as indicated
above.
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8. Sum-of-digits function in the case of finite Parry expansion.
Now we compute o and § in the case of “normal numeration” associated
with linear finite recurrence expansion with canonical initial values (cf. [B89]
and [GTi91]; see also [Fro] and [Sh88]).

Let (u;);>1 be a strictly increasing sequence of positive integers with
u; = 1; the normal representation of the integer N > 1 with respect to
(u;)i>1 is the finite sequence of n integers €1, €2, . .. , €, uniquely determined
by the “greedy algorithm”:

un§N<un+17 En:[N/un]a Tn:N_Enuna
and, for 2 < i <n,
Ei—1 = [Ti/ui—l] Ti—1 =T; —&i—1Ui—1 -
If (g})i=1,...n are integers such that N = """ | ju;, then the sequence
(5/‘)1':1,...,71 is the normal representation of N if and only if
J
Vi=1,....n ZE;’LLE < Ujt1 (Cf [FI‘])

i=1
Now let d > 1 be an integer and a1, as, ..., aq non-negative integers with
aq > 1 satisfying the “Parry condition”: if d > 2, then
Vi=2,...,d aj...adOj_l <1 a1Gs...a4
(<; being the lexicographic order), and if d = 1, then a; > 2.
Let (u;)i>1 be such that u; =1 and

w — J G1ti-1 +asu; o+ ... +a;_qur+1 (2
¢ a1U;—1 + Q2U;—2 + ... + AqU;—(g (Z

<i<d),
>d).
Then (u;);>1 is strictly increasing (because aq,aq > 1).

LEMMA. Define A = {1,2,...,d} and let o be the substitution over A
given by

N J1Y(G+1) ifl<j<d-1,
O'(j)_{lad ’lf]:d

(i) For anyi > 1, u; = |[o*~1(1)].

(ii) If N = Y0 lo*=1(m;)] is the admissible representation of N relative
to the substitution o, then the sequence e; = |m;| (i = 1,...,n) is the normal
representation of N with respect to (u;);>1.

Proof. (i) Immediate using the definition of o.
(ii) Using [DT89], Lemma 1.1, we have for 0 < j <n
Z 0"~ (m;)| < |07 (k;)|  for some k; € A.

i=1
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Thus, it remains to prove that for any k € A and j € N,

o7 (k)| < o7 (1)].
We have
o9 (k) = { (0771 (1)) % (092 (1))sr A%t (k4 j),  0<j<d—Fk,
(03*1(1))ak (O-J*Q(l))ak+1 o (O-]fd+k71(1))ad’ i>d—k.

Now we will use the fact that for the admissible representation, a lexico-
graphic inequality between two representations implies an ordinary inequal-
ity between the represented numbers.

If kK > 2, then by the Parry condition in the first case

097 (1) |+ o7 (1) -+ 1|
is the admissible representation of |¢7(k)| — 1, and in the second case
1) 21+ [ 1)

is the admissible representation of |07 (k)|. Moreover, these representations
are <; lw’ and the proof is complete.

The matrix of o and the eigenvectors satisfying the conditions of Sec-
tion 5 are

ay 1 0 0
M = aa 0 1 ... O : 529—1(0,11 ’0’1)
e 64 —1
ag 0 0 0
and
0
94 — 1 6% — a0
BCEROE0) :
0% — 091 — .. —ay_10
where 6 is the root of P(X) = X% — a; X% ! — ... — ag with maximum
modulus.

We compute the constants « and (§ of Section 5; the output function
is here f(m) = |m| and we check the vector v with first coordinate 0; we
obtain

Q(0)

azm withQ(X):a’le*1+...+a;and
a;: (% —1 +Za])
j<t
0
p= 2O o itk ROX) = X 4Lt d
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and

aj = ai(%(ai —1(a; —5) — (@i =1 —2a)A; + Z(a? — 2(a; - a)Aj)) ’

j<i

d
Ai = Z(ak — a) .
k=t

For instance, in the case of the ordinary numeration system d = 1,
o(l)=1%and a = (¢ —1)/2, 3= (¢*> — 1)/12.

In the case of the Fibonacci expansion d = 2, o(1) = 12 and 0(2) = 1,
ay =as =1, a=(5—+/5)/10 and 8 = 1/(5V5).

Remark ([Fa92]). If (a;);>1 is an eventually periodic sequence
aj ... am(@mi1 - Qpmy)™ (m > 0,1 > 1) satisfying the Parry condition

Vi >2 ajQjy1... <pa1az...

and (u;);>1 the sequence u; =1, u; = a1u;—1 + agui—2 + ... + a;—qu; +1
(i > 2), then the numeration associated with the substitution o on the finite
alphabet A = {1,2,...,m + [} given by

L 19 +1) G=1,2....m+1-1),
a(])‘{l“m“(m—i—l) (j=m+1)

is the same as the normal representation of integers with respect to (u;);>1
(same proof). We leave the computation of o and [ in this case to the
reader.
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