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Fields containing values of algebraic functions II
(On a conjecture of Schinzel)
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Introduction. The main question considered in the paper [DZ] was the
following: given a polynomial f ∈ Q[x, y], say absolutely irreducible, and
given a sequence {θj} satisfying f(j, θj) = 0, estimate the degree over the
rationals of the fields Q(θ1, . . . , θn) as n→∞.

It was shown (Theorem 2(a)) that, provided d = degy f > 1, a lower
bound of type cn/ logn holds for large n, where c > 1 depends only on f
(the simple examples f(x, y) = yd − x show that the bound is not far from
best possible). Also, a sufficient condition for an estimate of type cn was
given (Theorem 2(b)). That condition, which looked somewhat unnatural,
was not made more general and complete, due among other things to the
lack of certain estimates connected with power free values of polynomials. In
that context Professor A. Schinzel formulated an elegant conjecture giving
the exact condition for an exponential lower bound to hold: this is stated
below (but already appeared in [DZ]). Let us first introduce some notation.

Let Σ denote the splitting field of f over Q(x) and, for a positive
integer m, define Σ(m) as the splitting field of the polynomial f(m, y).
Let G be the Galois group of kΣ over k(x), k being some number field
containing the algebraic closure of Q in Σ. The function field kΣ corre-
sponds to a nonsingular curve C over k. Let S(x) be a squarefree polyno-
mial whose roots are precisely the finite ramification points of x (viewed as
a function on C). It is well known that, in view of our assumptions, S is
nonconstant (see Lemma 1.2 in [DZ]), and moreover, since f has rational
coefficients, S may also be assumed to have rational integral coefficients.
Let D(n) be the degree over Q of the composite of the fields Σ(j) for
1 ≤ j ≤ n. By means of a quantitative version of Hilbert’s Irreducibility
Theorem it was shown in [DZ] (see Remark 1, p. 21 of the old preprint
or the end of the proof of Theorem 2(a) in the published version) that
D(n) and the degree of Q(θ1, . . . , θn) have logarithms of the same order
of magnitude (their quotient is bounded above and below by positive con-

[201]



202 R. Dvornicich and U. Zannier

stants). So it will suffice to consider D(n). Schinzel’s conjecture is as fol-
lows:

We have logD(n)� n precisely when not both (i) and (ii) hold :

(i) S(x) has all of its roots rational.
(ii) G is abelian.

As remarked in [DZ] (in the Introduction to the recent version), Kum-
mer theory (see [La2], p. 218) easily proves that, when both conditions are
satisfied, Σ is contained in a finite composite of fields of type k((x+ b)1/e),
b ∈ Q, for a suitable number field k, whence an estimate logD(n)� n/ log n
follows from the prime number theorem. So one half of the statement is easy
to prove.

Let us look at the remaining half, namely the lower bound for logD(n)
under the assumption that either (i) or (ii) does not hold. Consideration
of polynomials of type f(x, y) = yd − S(x) (and in any case the proof of
Theorem 2 in [DZ], which included the conjecture in case S has some root
of degree 2 or 3 over Q) shows that to use the negation of condition (i) one
is at once faced with classical problems about the distribution of powerfree
values of polynomials (at the moment solved only in quite special cases;
see e.g. [Ho]), and conversely (as shown in [DZ]) such results would imply
Schinzel’s conjecture in all cases when (i) is not true. On the other hand, we
have concentrated on what can be said if one assumes that (i) holds, but not
(ii), approaching, so to say, the more algebraic part of the problem. Even in
this case, we have not been able to settle the question completely. However,
moving from the case of a cubic equation (see Remark 2 below for details),
we have found arguments which cover a fairly large class of groups. Here is
our result.

Theorem. Let condition (i) hold. Assume, moreover , that there exists
a prime p ‖#G such that G has no normal subgroups of index p (1). Then
logD(n)� n.

(In Remark 3 we shall sketch the proof that, in fact, if the theorem
applies, an absolute lower bound holds for large n, namely logD(n) ≥
((6 log 2)/π2)n+ o(n).)

Simple group theoretical arguments combined with Bertrand’s postulate
will prove the following

Corollary. Under condition (i), we have logD(n) � n when G is
nonabelian of squarefree order , and also when G = Sn, or G = An.

R e m a r k 1. Let Ω be a subfield of Σ, normal over Q(x). We observe
that if (i) holds for Σ, then it holds for Ω. Also, if d(n) is defined for Ω

(1) I.e. G is not p-nilpotent.
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as D(n) is defined for Σ, we have d(n) ≤ D(n), so it suffices to prove a
lower bound for d(n). This means that in fact it is only necessary that the
assumptions apply to some quotient of G rather than to G itself.

Proofs. From now on we shall let k be a number field as in the above
definitions, containing moreover a primitive pth root of unity. Also, we shall
replace kΣ with Σ and kΣ(m) with Σ(m). Throughout we shall let m
run through the sequenceM of positive integers such that Σ(m) has Galois
group G over k. In view of well known results related to Hilbert’s Irreducibil-
ity Theorem (see for instance [Sch], Ch. 22 or [Se], Ch. 9), such a sequence
contains all but at most O(

√
T ) integers in the interval [0, T ].

Let now σ ∈ G be an element of order p, and let Σ0 be the fixed field
of σ. By Kummer theory we have

Σ = Σ0(α1/p)

for some α ∈ Σ0, not a pth power in Σ0 (and the group generated by its
image in Σ∗0/(Σ

∗
0 )p is uniquely determined). We choose such an α to have

minimal degree over k(x). Observe that in any case this degree is greater
than 1: otherwise α ∈ k(x), and the field k(x, α1/p) would be a Galois
extension of k(x) of degree p and contained in Σ, corresponding to a normal
subgroup of G of index p, whose existence violates the assumptions. Let
Φ = k(x, α) and Γ be its Galois closure over k(x). Define G(x) for Γ as S(x)
was defined for Σ. Since Γ ⊂ Σ, G is a divisor of S (in Q[x]), and is also
nonconstant, since α 6∈ k(x).

For an integer m, let P run through all points of C above m (i.e. such
that x(P ) = m). For all but finitely many m, α, as a function on C, will be
defined at all such P ’s. For such m define Φ(P ) = k(α(P )), and let Γ (m) be
the composite of all such Φ(P ) or, equivalently, Γ (m) is the splitting field
of g(m, y) over k, where g(x, α) = 0 is the minimal equation of α over k(x).
In general, for ∆ a subfield of Σ containing k(x) one can define ∆(P ), for
P ∈ C, also as the residue field of the valuation (over k) that P induces on ∆.

Observe that, for m ∈ M, we shall have Σ(m) = Σ(P ) for all P above
m, and the definition τ(ω(P )) := (τω)(P ) for a rational function ω ∈ Σ,
defined at P , will establish the isomorphism beween Gal(Σ(P ) : k) and G.
(Changing the point P above m has the effect of an inner automorphism
of G.) Also, this will induce a 1-1 correspondence, preserving degrees and
Galois groups, between the lattices of intermediate fields k(x) ⊂ ∆ ⊂ Σ and
k ⊂ ∆(P ) ⊂ Σ(P ).

In particular, the normal closure of Φ(P ) over k will be Γ (m) for m ∈M.

Lemma 1. There exists p0 such that if p ≥ p0 and p ramifies in Γ (m),
then p |G(m).
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This lemma is proved in a direct way in [DZ], Lemma 3.1. It is closely
connected to the affine version of the Chevalley–Weil Theorem (see for in-
stance [Se], p. 109; probably a proof can be derived also from the arguments
given there). To establish the connection observe that, if V denotes the affine
line deprived of the roots %i of G, and if S denotes the set of prime divisors
of G(m), then m is an S-integral point of V: by this we mean that the func-
tions x, 1/(x − %i), which generate the affine algebra of V, take S-integral
values on m. If φ is the morphism of curves corresponding to the inclusion
k(x) ⊂ Γ , then Γ (m) may also be viewed as the field generated by the fiber
of φ above m. In this way Lemma 1 corresponds to the assertion about rami-
fication made at the beginning of the proof given in [Se]. The only difference
is that in our case S depends on m, so a uniform argument would be needed.

Lemma 2. There exists p0 such that if p ≥ p0 is a prime such that
p ‖G(m), then p ramifies in Γ (m).

This lemma is an immediate corollary of Remark 2, after the proof of
Lemma 3.2 in [DZ]. As observed in that paper (where a direct proof is
given) it may also be derived from Weil’s Decomposition Theorem. In fact,
let l(x) be a linear factor of G, thought as a function on the nonsingular
curve corresponding to Γ . Its divisor of zeros is of the form eD for some
divisor D, where e ≥ 2 is the ramification index. By Weil’s Theorem (see
e.g. [La1], p. 263) this implies that the ideal generated by l(m) in the ring of
integers of Γ (m) is, apart from a set of valuations lying above one of finitely
many rational primes, an eth power, whence, if p is large, either ordpl(m)
is divisible by e or p ramifies in Γ (m) (see the recent version of [DZ] for a
slightly more detailed argument along these lines, as well as for the above
quoted direct proof).

Lemma 3. Let G ∈ Z[x] be a nonconstant polynomial with all roots ratio-
nal and simple, and let p0 be sufficiently large. Then there exists a sequence
of distinct natural numbers mj such that mj � j and G(mj) = cjsj , where
all prime factors of cj are ≤ p0, and the sj are pairwise distinct squarefree
numbers all of whose prime factors are > p0.

P r o o f. For any prime number p, there exists e = e(p) such that, for
every B ∈ N, the number of solutions of the congruence

G(m) ≡ 0 (mod pB)

does not exceed e(p). (As once remarked by Hooley, this fact was proved
independently by Ore and Nagell in 1921. A simple argument in our case is
as follows: factor G(m) over Z as g

∏k
i=1(bim − ai), where (ai, bi) = 1 for

all i. The greatest common divisor of any two factors is clearly bounded,
whence it follows easily that, if B is large enough and m is a solution of our
congruence, then for some index i and some bounded number c, we have
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bim− ai ≡ 0 (mod pB−c). For B > c it follows that p - bi, whence this con-
gruence has at most pc solutions mod pB . Summing over i yields the result.)

Also, there exists p1 such that, for p ≥ p1, e(p) ≤ b = degG. (It suffices
that no prime ≥ p1 divides the discriminant of G.)

Hence, the number of positive integers m ≤ n such that pB |G(m) is
≤ ne(p)/pB + e(p). Observe also that p2 |G(m) implies, for p not dividing
the discriminant of G, that p2 divides some linear factor, whence p ≤ A√m,
for some A (depending of course on G). Let p0 > p1. Then the sequence A
of positive integers m such that either pB |G(m) for some prime p ≤ p0 or
p2 |G(m) for some prime ≥ p0 intersects the interval [1, n] in at most

∑

p≤p0

n
e(p)
pB

+
∑

p0<p≤A
√
n

n
b

p2 +O(
√
n) = n(λ1 + λ2) +O(

√
n),

integers, where λ1 =
∑
p≤p0

e(p)/pB , λ2 =
∑
p0<p≤A

√
n b/p

2. We have λ2 ≤∑
p0<p

b/p2 ≤ b/p0. Choose p0 > max(p1, 2b), and then choose B so large
that λ1 < 1/4, say. Then λ1+λ2 ≤ 3/4, whence the complementary sequence
Ã contains at least 1

4n+O(
√
n) integers in the interval [1, n]. By definition

we may write, for m ∈ Ã,

G(m) = c(m)s(m)

where c(m) is made with primes up to p0, each taken with an exponent
≤ B, while s(m) is squarefree, and made only with primes > p0, or s(m) = 1.
Since c(m) has a finite number, say H, of possibilities, each s(m) can appear
at most bH times. So, taking a subsequence such that each s(m) appears
exactly once, this will contain at least 1

4bHn + O(
√
n) integers in [1, n],

proving the lemma.

Such simple results have been well known since long ago; for instance,
Professor Schinzel has pointed out to us Nagell’s paper [Na]. For the sake
of completeness we have included a proof.

By the above remarks concerning the density of M it is clear that we
may also assume that the sequence B = {mj} in the statement of Lemma 3
is contained in M.

We may write Σ0 = k(x, ξ) for some primitive element ξ, which we may
assume, for all j, to be defined at each point P of C lying above mj ∈ B (in
the sense that x(P ) = mj).

We begin by choosing inductively points Pj above mj . Assume Pj is
constructed for 1 ≤ j ≤ h in such a way that, setting

Fh = k(ξ(P1), . . . , ξ(Ph))(1)

we have

p - [Fh : k].(2)
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We contend that Ph+1 may be found with the same properties. We are
indebted to Yuri Bilu for the following argument, which simplifies our pre-
vious proof. Let X = {ξ(P ) : P ∈ C, x(P ) = mh+1} be the set of values
of ξ at points lying above mh+1. Then Gal(k/k) (2) acts on X (in fact, it
acts transitively by our choice of the sequence M). Also, #X = [Σ : k(x)]
is not divisible by p. In particular, at least one orbit X0 of the action of the
subgroup Gal(k/Fh) on X has cardinality not divisible by p. Choosing Ph+1

such that ξ(Ph+1) ∈ X0 we get our contention.
The following result will be crucial.

Lemma 4. Let Λ, Ω be subfields of Σ such that Λ ⊃ Φ = k(x, α) and
k(x) ⊂ Ω ⊂ Λ. Assume also that p - [Ω : k(x)]. Let N denote the norm from
Λ to Ω. Then either N (α) is a p-th power in Ω, or [Ω : k(x)] ≥ [k(x, α) :
k(x)].

R e m a r k 2. As a simple and basic instance, which motivated the more
general method, consider f of degree 3 in y such that G = S3, and take
p = 3. We may assume f(x, y) = y3−3by−2c, where b, c ∈ Q(x), and we let
k = Q

(
exp

(
2
3πi
))

. Set a = c2− b3. Then Cardano’s formulae show that the
splitting field Σ of f over k(x) is k(x, (c+

√
a)1/3) (= k(x, (c−√a)1/3)). The

field Σ0 in this case is k(x,
√
a), while α = c+

√
a. Observe that the norm of

α from Σ0 to k(x) is b3, the cube of a rational function. This fact corresponds
to the conclusion of Lemma 4, taking Ω = k(x), Λ = Σ0 = k(x,

√
a).

P r o o f o f L e m m a 4. Put β = N (α), and assume β is not a pth
power in Ω. Then [Ω(β1/p) : Ω] = p. Since β is a product of conjugates of α,
which are all pth powers in Σ, we have β1/p ∈ Σ.

Let H ⊂ G be the Galois group of the extension Σ/Ω. In view of our
assumptions, H has order divisible by p, and thus contains an element τ of
order p. Let Σ̃0 be the fixed field of τ . This field contains Ω and has degree
p below Σ. Since the order of G is not divisible by p2, we see that p does
not divide [Σ̃0 : Ω]. In particular, β1/p 6∈ Σ̃0, whence

(3) Σ̃0(β1/p) = Σ.

Since the order of G is not a multiple of p2 and since all p-Sylow are
conjugate, we deduce that Σ̃0 is a field conjugate to Σ0, say Σ0 = δΣ̃0 for
some δ ∈ G. Let α∗ = δβ ∈ Σ0. Then (3) implies

(4) Σ0(α1/p
∗ ) = Σ.

By minimality we find that the degree of α∗ over k(x), which equals the
degree of β over k(x), is at least the degree of α over k(x). Since, however,
β ∈ Ω, we get the second alternative in the conclusion of the lemma.

(2) A bar denotes algebraic closure.
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For all pairs of subfields Ω,Λ of Σ such that the first alternative of the
lemma applies, let Nα = βp be the corresponding equation. Omitting if
necessary a finite number of terms from our sequence {mj}, we may assume
that each such function β is, for all j, defined at each point of C above mj .

Put αh = α(Ph) and ξh = ξ(Ph). We have

(5) Σ(mh) = k(ξh)(α1/p
h ) ⊂ Fh(α1/p

h ).

Assume that h is such that

(6) Σ(mh) ⊂ Σ(m1) . . . Σ(mh−1).

The field on the right is contained in Fh(α1/p
1 , . . . , α

1/p
h−1) so, by (5) and

by Kummer theory, applied with base field Fh, we must have

(7) αh =
h−1∏

i=1

αaii φ
p

for suitable integers ai and φ ∈ Fh.
We shall take the norm of (7) to k(αh). Put, for i < h,

A = k(αh, αi) ∩ Γ (mi) and B = k(αh) ∩ Γ (mi).

Then, N denoting the norm map, we have

(8) N
k(αh,αi)
k(αh) (αi) = NA

B (αi).

In fact, the restriction Gal(k(αh)Γ (mi) : k(αh)) → Gal(Γ (mi) : B) is an
isomorphism.

Since mi ∈ M the fields A, B will correspond, under the identification
of functional and numerical Galois groups obtained by specializing at Pi,
to fields Λ, Ω resp., intermediate between k(x) and Σ, and satisfying the
assumptions of Lemma 4. In fact, k(αi) (which is Φ(Pi)) is contained in A,
and also B ⊂ A, whence Φ ⊂ Λ and Ω ⊂ Λ. Also, since k(αh) ⊂ Fh, we
have p - [B : k], whence p - [Ω : k(x)]. In fact, the correspondence preserves
degrees. This also implies that, if the second alternative of Lemma 4 held,
then

[B : k] ≥ [k(αi) : k].
But [B : k] ≤ [k(αh) : k] = [Φ : k(x)] = [k(αi) : k], the last equalities being
valid since both mi, mh belong to M. We deduce that equality would hold
throughout, whence

B = k(αh) ⊂ Γ (mi).
Since Γ (mi) is normal over k, the normal closure of k(αh) over k, which

is Γ (mh), is contained in Γ (mi). But they have the same degree over k,
since mi,mh ∈M, whence Γ (mh) = Γ (mi). In particular, these fields must
have the same ramified rational primes. Now we have G(mi) = cisi and
G(mh) = chsh with ci, ch, si, sh as in Lemma 3, and si 6= sh. Assume sh - si
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(the other case being symmetrical) and pick a prime q dividing sh but not
si (this exists since both are squarefree). Since q ≥ p0 and since q ‖G(mh),
Lemma 2 implies that q ramifies in Γ (mh). If q were ramified in Γ (mi), then
Lemma 1 would imply q |G(mi), which is false.

We conclude that the first alternative of Lemma 4 must hold, whence

N (α) = βp

for some β ∈ Ω. Specializing this equation at Pi, which is possible in view
of the remarks following the proof of Lemma 4 about the β’s arising in this
way, we get

NA
B (αi) = β(Pi)p,

where now β(Pi) ∈ B. Using (8) we also get

N
k(αh,αi)
k(αh) (αi) = β(Pi)p.

But the norm from Fh to k(αh) is a power of Nk(αh,αi)
k(αh) (αi), whence

NFh
k(αh)(αi) = δpi

for some δi ∈ k(αh), and this holds for all i < h. Taking the norm of (7) from
Fh to k(αh) then implies that α[Fh:k(αh)]

h is the pth power of some element
of k(αh). However, [Fh : k] is not divisible by p, so αh itself is a pth power in
k(αh). But αh cannot be a pth power even in Σ0(Ph) (which contains k(αh)
since α ∈ Σ0), otherwise Σ0(Ph) = Σ0(Ph)(α1/p

h ) = Σ(Ph), which does not
hold since mh ∈ M, and since Σ0 6= Σ. This shows that, for all h, (6) is
impossible. So

[Σ(m1) . . . Σ(mh) : Σ(m1) . . . Σ(mh−1)] ≥ 2

(in fact ≥ p), whence D(mh) ≥ 2h. Since, however, mh � h, we get the
desired exponential estimate. This concludes the proof.

R e m a r k 3. We have made no effort to optimize the constant implicit in
logD(n) � n, or even the value µ = lim inf(logD(n))/n. This will depend
on the density of the sequence {mi} constructed in Lemma 3, which in
turn certainly depends on the basic data, in general. However, by a slightly
different construction µ can be shown to be bounded below by a positive
absolute constant. We only give a sketch of the argument. The proof of
Lemma 3 shows the following, by making p0 bigger if necessary:

For all λ < 1 and for sufficiently large p0 there exists a sequence {mi} of
asymptotic density at least λ such that G(mi) = cis(mi), where each prime
power appearing in ci is of type qb with q ≤ p0 and b ≤ B = B(λ), and
where each s(mi) is squarefree and has only prime factors > p0.
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Now it suffices to choose a subsequence as dense as possible and such
that the corresponding s(mi) are pairwise distinct: the rest of the above
proof will work in the same way. Assume that m < n are elements of the
sequence with s(m) = s(n). Then we have an equation

(9) cG(m) = c′G(n)

where c, c′ have the same form as the ci, and so have finitely many possibil-
ities, leading to a finite number of diophantine equations (9).

Assume b = degG > 1. At this point one could invoke Siegel’s celebrated
theorem ([La1], Ch. 8, or [Se], Ch. 7) and show that, for each equation, the
solutions form a “thin” set. In this case, however, an elementary argument
suffices. Let β ∈ Q be such that the second coefficient of G(x− β) = G∗(x),
say, vanishes, and write

(10) G∗(x) = a0x
b + a2x

b−2 + . . .+ ab, ai ∈ Q, a0 6= 0.

Also, put ω = c/c′, a positive rational number which we suppose fixed. Now,
(9) reads cG∗(m+ β) = c′G∗(n+ β), and from (10) we get

|a0||(n+ β)b − (m+ β)bω| � nb−2,

whence, for the positive real bth root of ω we have

(11) |(n+ β)− ω1/b(m+ β)| � 1/n,

where the implied constant depends only on G∗. If a := ω1/b > 0 is rational,
this shows that the left hand side of (11) is zero for large n so, if there were
infinitely many solutions we would have cG∗(x) = c′G∗(ax) identically. By
(10), (c− c′ah)ab−h = 0 for all h, whence ai = 0 for i > 0, a contradiction,
since G has only simple roots and degree > 1. If ω1/b is irrational, then
the rationals (n + β)/(m + β) form a sequence of good approximations to
ω1/b. Now it is easily proved that the admissible m’s belong to a sequence of
zero asymptotic density (in fact, the difference between consecutive elements
plainly tends to ∞). To sum up, omitting a finite number of sequences of
zero asymptotic density from our original sequence, we may assume that, for
all possible values of c, c′, (9) is unsolvable. This clearly proves the assertion
when b ≥ 2.

The case of linear G remains. Now the function field extension Γ/k(x)
has just one finite ramified point. It is known (and easily proved by the
Hurwitz genus formula) that Γ has genus zero, whence it must be of type
k((rx− s)1/e), where r 6= 0, s and e > 1 are integers. Write r = (r, s)r1, s =
(r, s)s1 and consider the sequence B of the integers m such that r1m− s1 is
squarefree. It is well known (and easily proved) that B contains asymptot-
ically ≥ (6/π2)n + o(n) elements in the interval [1, n]. Distinct elements in
the sequence give rise to distinct fields Γ (m), and this suffices for the above
proof to work.
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In this way one gets the bound µ ≥ (6/π2) log p.

P r o o f o f C o r o l l a r y. Let us begin with the case of g := #G square-
free. If the assumptions of the Theorem are satisfied for at least one prime
p the proof is finished. Otherwise, for each p | g, there exists a subgroup Hp
normal in G, of index p.

Observe that, if H and K are normal subgroups of G, of coprime indices
m,n resp., then H∩K has index mn. (In fact, its index in H is ≤ m, whence
its index in G is at most mn. On the other hand, this index is divisible by
both m,n.)

It follows inductively that, letting q run through primes, the subgroup⋂

q|g, q 6=p
Hq = S(p)

has order p, and is normal. Thus each p-Sylow is normal and cyclic, whence
G is cyclic, contradicting the assumption that the group is nonabelian. (In
any case we have already remarked that, for abelian G, and if (i) holds, then
logD(n)� n/ log n.)

Let now n ≥ 3 and G = Sn. By Bertrand’s postulate there exists a prime
p with n/2 < p ≤ n. Clearly p ‖n!. It is also well known that the only normal
proper subgroup of Sn is An, so again the assumptions of the theorem are
satisfied for at least one p. Similarly in the case of An.
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