A certain power series associated with a Beatty sequence

by
Takao Komatsu (North Ryde, N.S.W.)

0. Introduction. We consider the function

$$
\begin{equation*}
f(\theta, \phi ; x, y)=\sum_{k=1}^{\infty} \sum_{1 \leq m \leq k \theta+\phi} x^{k} y^{m} \tag{1}
\end{equation*}
$$

Putting $y=1$ entails that

$$
\begin{equation*}
f(\theta, \phi ; x, 1)=\sum_{k=1}^{\infty}[k \theta+\phi] x^{k} \tag{2}
\end{equation*}
$$

The sequence $\{[k \theta+\phi]\}_{k=1}^{\infty}$, which appears in this power series, is called a Beatty sequence. In that context it is natural to consider the sequence of differences

$$
\begin{equation*}
\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k=1}^{\infty} \tag{3}
\end{equation*}
$$

The function $f(\theta, 0 ; x, y)$ and the sequence $\{[(k+1) \theta]-[k \theta]\}_{k=1}^{\infty}$ in the homogeneous case have been treated independently by many authors (see e.g. [1], [7], [8] and [2], [10] respectively). The inhomogeneous case of (3) has also been treated by several authors (see e.g. [3]-[5]).

In 1992 Nishioka, Shiokawa and Tamura [9] described the sequence (3) in the inhomogeneous case by using the characteristic properties of (1), but their result (Theorem 3 of [9]) is incorrect. The arguments only hold when ϕ is an integer or when $b_{n}=1$ for all positive integers n (for the definition of b_{n} see the next section).

In this paper we base on the arguments corrected by the author [6] and describe the sequence (3) completely in the new form. Of course, Theorem 2 of [9] holds because $\phi=0$. Lemmas 2 and 3 of [9], which were used to prove Theorem 3 of [9], work and have meaning only in the original context. After

[^0]correcting the arguments properly, both lemmas are no longer useful and we need different new arguments to obtain a correction to Theorem 3 of [9].

1. Preliminary remarks and notation. Throughout this paper $\theta>0$ is irrational and $k \theta+\phi$ is never integral for any positive integer k. As usual, $\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ denotes the continued fraction expansion of θ, where

$$
\begin{aligned}
\theta & =a_{0}+\theta_{0}, & & a_{0}=[\theta] \\
1 / \theta_{n-1} & =a_{n}+\theta_{n}, & & a_{n}=\left[1 / \theta_{n-1}\right] \quad(n=1,2, \ldots) .
\end{aligned}
$$

The nth convergent $p_{n} / q_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of θ is then given by the recurrence relations

$$
\left.\begin{array}{rl}
p_{n} & =a_{n} p_{n-1}+p_{n-2} \\
q_{n} & =a_{n} q_{n-1}+q_{n-2}
\end{array} \quad(n=0,1, \ldots), \quad p_{-2}=0, \quad p_{-1}=1, \ldots\right), \quad q_{-2}=1, \quad q_{-1}=0 .
$$

One now expands ϕ in terms of the sequence $\left\{\theta_{0}, \theta_{1}, \ldots\right\}$ by setting

$$
\begin{aligned}
& \phi=b_{0}-\phi_{0}, \quad b_{0}=\lceil\phi\rceil, \\
& \phi_{n-1} / \theta_{n-1}=b_{n}-\phi_{n}, \quad b_{n}=\left\lceil\phi_{n-1} / \theta_{n-1}\right\rceil \quad(n=1,2, \ldots) .
\end{aligned}
$$

Furthermore, the quantities s_{n} and t_{n} are defined by

$$
\begin{aligned}
s_{n} & =\sum_{\nu=0}^{n} b_{\nu} p_{\nu-1} \quad(n=0,1, \ldots), \quad s_{n}=0 \quad(n<0) \\
t_{n} & =\sum_{\nu=0}^{n} b_{\nu} q_{\nu-1} \quad(n=0,1, \ldots), \quad t_{n}=0 \quad(n<0) .
\end{aligned}
$$

We can assume $0<\theta, \phi<1$ without loss of generality. As shown in Sections 1 and 2 of [6],

$$
f(\theta, \phi ; x, y)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{t_{n}} y^{s_{n}}}{\left(1-x^{q_{n}} y^{p_{n}}\right)\left(1-x^{q_{n-1}} y^{p_{n-1}}\right)}
$$

which yields

$$
\sum_{k=0}^{\infty}([(k+1) \theta+\phi]-[k \theta+\phi]) x^{k}=\frac{1}{x} \lim _{n \rightarrow \infty} P_{n}^{*}(x), \quad|x|<1
$$

Here, $P_{n}^{*}(x)$ is defined recursively by

$$
P_{n}^{*}(x)=A_{n}^{*}(x) P_{n-1}^{*}(x)+x^{b_{n} q_{n-1}} P_{n-2}^{*}(x) \quad(n \geq 1)
$$

with $P_{-1}^{*}(x)=1, P_{0}^{*}(x)=0$, where

$$
A_{n}^{*}(x)=\frac{1-x^{q_{n}}-x^{b_{n} q_{n-1}}\left(1-x^{q_{n-2}}\right)}{1-x^{q_{n-1}}} \quad(n \geq 1)
$$

Let $P_{n}^{*}(x)=d_{1} x+d_{2} x^{2}+d_{3} x^{3}+\ldots$ be the power series expansion. Put $P_{n}^{*}=d_{1} d_{2} d_{3} \ldots$, which is the string of coefficients of the power series beginning from that of x^{1}.

Define

$$
\Gamma_{n}=\left\{a_{3}-b_{3}, a_{4}-b_{4}, \ldots, a_{n}-b_{n}\right\} \quad(n \geq 3)
$$

and write $\pi_{n}=a_{n}-b_{n}$ if $a_{n}>b_{n}, \varpi_{n}=a_{n}-b_{n}$ if $a_{n} \geq b_{n}$-to account for the case when the entry 0 is permitted.

We consider the following situations:

$\Gamma_{n} \in \mathcal{O}$		if $\Gamma_{n}=\varpi_{3} \varpi_{4} \ldots \varpi_{n}$,
$\Gamma_{n} \in \mathcal{A}_{k, l}$	$($ or simply $\mathcal{A})$	if Γ_{n} ends in $(-1) 0^{2 k-1} \pi_{n-l} \underbrace{\varpi_{n-l+1} \ldots \varpi_{n}}_{l}$,
$\Gamma_{n} \in \mathcal{B}_{k}$	$($ or simply $\mathcal{B})$	if Γ_{n} ends in $(-1) 0^{2 k-1}$,
$\Gamma_{n} \in \mathcal{C}_{k}$	(or simply $\mathcal{C})$	if Γ_{n} ends in $(-1) 0^{2 k-2}(k \geq 2)$,
$\Gamma_{n} \in \mathcal{C}_{1}$		if Γ_{n} ends in $\pi_{n-l-1} \underbrace{\varpi_{n-l} \ldots \varpi_{n-1}}_{l}(-1)$,
$\Gamma_{n} \in \mathcal{D}_{k}$	(or simply $\mathcal{D})$	if Γ_{n} ends in $(-1) 0^{2 k-2}(-1)$,

where k is a positive integer and l is a non-negative integer. (Note that $\Gamma_{3} \in \mathcal{O}$ if $a_{3} \geq b_{3}$ and $\Gamma_{3} \in \mathcal{C}$ if $a_{3}=b_{3}-1$.)

Let $\beta_{n}=t_{n}-q_{n-1}-b_{1}+1=\left(b_{n}-1\right) q_{n-1}+b_{n-1} q_{n-2}+\ldots+b_{2} q_{1}+1$. We define the words u, v and Δ_{n} as

$$
u=\underbrace{0 \ldots 0}_{a_{1}-1} 1, \quad v=\underbrace{0 \ldots 0}_{b_{1}-1} 1 \quad \text { and } \quad \Delta_{n}=\underbrace{0 \ldots 0}_{\beta_{n}-2}(-1)^{n+1}(-1)^{n}
$$

2. Main results. Our main result, which replaces the alleged Theorem 3 of [9], is

Theorem. Let θ be irrational with $0<\theta, \phi<1$. Then either

$$
\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k=0}^{\infty}=\lim _{n \rightarrow \infty} P_{n}^{*}
$$

or

$$
\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k=1}^{\infty}=\lim _{n \rightarrow \infty} \underbrace{0 \ldots 01}_{b_{1}-1} w_{n} .
$$

Here $\left(w_{n}\right)$ is the sequence of words of respective lengths q_{n}, with letters 0 or 1, given inductively by

$$
w_{1}=u, \quad w_{2}=w_{1}^{b_{2}-1} 0 w_{1}^{a_{2}-b_{2}+1}, \quad w_{n}=w_{n-1}^{c_{n}} w_{n-2} w_{n-1}^{a_{n}-c_{n}}
$$

where

$$
c_{n}= \begin{cases}b_{n}+1 & \text { if } \Gamma_{n-1} \in \mathcal{B} \text { and } a_{n}>b_{n} \\ 0 & \text { if } \Gamma_{n-1} \in \mathcal{C} \\ 1 & \text { if } \Gamma_{n-1} \in \mathcal{D} \\ \min \left(a_{n}, b_{n}\right) & \text { otherwise }\end{cases}
$$

Remark. By Lemma 1 below, $a_{n} \leq b_{n}$ if $\Gamma_{n-1} \in \mathcal{C}, \mathcal{D}$. Other possible cases are limited to $\Gamma_{n-1} \in \mathcal{B}$ and $a_{n}=b_{n}$, and $\Gamma_{n-1} \in \mathcal{O}, \mathcal{A}$.

The Theorem is a direct consequence of the following Proposition, which describes P_{n}^{*}. From now on the underline means to add (-1) to the last one part in that word. For example, if $W=00101$, then $\underline{W}=00100$. If $W=00100$, then $\underline{W}=0010(-1), \underline{W^{2}}=001000010(-1)$ and $(\underline{W})^{2}=$ 0010(-1)0010(-1).

Proposition. For every $n=1,2, \ldots$, we have $P_{n}^{*}=v w_{n} w_{n}^{\prime \prime}$. Here, $\left|w_{n}\right|=q_{n}$ for every n, and $w_{1}=u, w_{2}=u^{b_{2}-1} 0 u^{a_{2}-b_{2}+1} ; w_{1}^{\prime \prime}$ and $w_{2}^{\prime \prime}$ are empty; and w_{n} and $w_{n}^{\prime \prime}(n \geq 3)$ are determined as follows:
(1) If $n=3$ and $\Gamma_{n-1} \in \mathcal{O}$ or $\mathcal{A}(n \geq 4)$, then

$$
\begin{cases}w_{n}=w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}} \quad \text { and } \quad w_{n}^{\prime \prime}=\text { empty } & \text { if } a_{n} \geq b_{n} \\ w_{n}=w_{n-1}^{a_{n}} w_{n-2} \quad \text { and } \quad w_{n}^{\prime \prime}=\Delta_{n-1} & \text { if } a_{n}=b_{n}-1\end{cases}
$$

(2) If $\Gamma_{n-1} \in \mathcal{B}(n \geq 5)$, then

$$
\begin{cases}w_{n}=w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1} \quad \text { and } \quad w_{n}^{\prime \prime}=\text { empty } & \text { if } a_{n}>b_{n} \\ w_{n}=w_{n-1}^{a_{n}} w_{n-2} \quad \text { and } \quad w_{n}^{\prime \prime}=\Delta_{n-2 k-1} & \text { if } a_{n}=b_{n}\end{cases}
$$

$\left(k=1\right.$ if $\left.\Gamma_{n-2} \in \mathcal{D}\right)$.
(3) If $\Gamma_{n-1} \in \mathcal{C}(n \geq 4)$, then

$$
w_{n}=w_{n-2} w_{n-1}^{a_{n}} \quad \text { and } \quad w_{n}^{\prime \prime}= \begin{cases}\text { empty } & \text { if } a_{n}=b_{n} \\ \Delta_{n-1} & \text { if } a_{n}=b_{n}-1\end{cases}
$$

(4) If $\Gamma_{n-1} \in \mathcal{D}(n \geq 5)$, then

$$
w_{n}=w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1} \quad \text { and } \quad w_{n}^{\prime \prime}= \begin{cases}\text { empty } & \text { if } a_{n}=b_{n} \\ \Delta_{n-1} & \text { if } a_{n}=b_{n}-1\end{cases}
$$

We detail the initial cases $n=1,2,3$ here. We notice that

$$
\begin{aligned}
A_{n}^{*}(x)= & 1+x^{q_{n-1}}+\ldots+x^{\left(b_{n}-1\right) q_{n-1}} \\
& + \begin{cases}x^{b_{n} q_{n-1}+q_{n-2}}\left(1+x^{q_{n-1}}+\ldots+x^{\left(a_{n}-b_{n}-1\right) q_{n-1}}\right) \\
0 & \text { if } a_{n}>b_{n} \\
-x^{q_{n}} & \text { if } a_{n}=b_{n}\end{cases} \\
& \text { if } a_{n}=b_{n}-1
\end{aligned} .
$$

Since $P_{1}^{*}(x)=x^{b_{1}}$, we have $P_{1}^{*}=v=v \underline{u}$. Since $P_{2}^{*}(x)=x^{b_{1}} A_{2}^{*}(x)$, we have

$$
P_{2}^{*}= \begin{cases}v u^{b_{2}-1} 0 u^{a_{2}-b_{2}}=v u^{b_{2}-1} 0 u^{a_{2}-b_{2}} \underline{u} & \text { if } a_{2}>b_{2} \\ v u^{b_{2}-1}=v u^{b_{2}-1} 0 \underline{u} & \text { if } a_{2}=b_{2} \\ v u^{b_{2}-1}(-1) & \text { if } a_{2}=b_{2}-1\end{cases}
$$

Thus, $w_{2}=u^{b_{2}-1} 0 u^{a_{2}-b_{2}+1}$. Since $P_{3}^{*}(x)=x^{b_{1}}\left(A_{3}^{*}(x) A_{2}^{*}(x)+1\right)$, we have

$$
P_{3}^{*}= \begin{cases}v w_{2}^{b_{3}} u w_{2}^{a_{3}-b_{3}-1} u^{b_{2}-1} 0 u^{a_{2}-b_{2}} & \text { if } a_{3}>b_{3}, \\ v w_{2}^{b_{3}}=v w_{2}^{b_{3}} \underline{ } & \text { if } a_{3}=b_{3}, \\ v w_{2}^{a_{3}} \underbrace{00 \ldots .00}_{a_{1}+\beta_{2}-2}(-1) 1 & \text { if } a_{3}=b_{3}-1 .\end{cases}
$$

3. Lemmas. We need the following lemmas to complete the proof of the Proposition.

Lemma 1. (1) If $\Gamma_{n-1} \in \mathcal{C}$ or \mathcal{D}, then $a_{n} \leq b_{n}$.
(2) If $\Gamma_{n-1} \in \mathcal{B}$, then $a_{n} \geq b_{n}$.

Fig. 1

Proof. We prove (1) and (2) together. Notice that as long as $a_{i} \geq b_{i}$ for $i=3,4, \ldots$, always $\Gamma_{i} \in \mathcal{O}$. Suppose that $a_{3} \geq b_{3}, \ldots, a_{n-2} \geq b_{n-2}$ and $a_{n-1}=b_{n-1}-1$ for some fixed $n \geq 4$, which means $\Gamma_{n-1} \in \mathcal{C}_{1}$. From the definition we have

$$
\theta_{n-1}+\phi_{n-1}=\left(\frac{1}{\theta_{n-2}}-a_{n-1}\right)+\left(b_{n-1}-\frac{\phi_{n-2}}{\theta_{n-2}}\right)=\frac{1-\phi_{n-2}}{\theta_{n-2}}+1>1
$$

or

$$
0<\frac{1}{\theta_{n-1}}-\frac{\phi_{n-1}}{\theta_{n-1}}<1 .
$$

Therefore,

$$
a_{n}=\left[\frac{1}{\theta_{n-1}}\right] \leq b_{n}=\left\lceil\frac{\phi_{n-1}}{\theta_{n-1}}\right\rceil
$$

The case $\Gamma_{n-1} \in \mathcal{C}_{1}$ is proved.
If $a_{n}=b_{n}$, that is, $\Gamma_{n} \in \mathcal{B}_{1}$, we get

$$
\theta_{n}+\phi_{n}=\left(\frac{1}{\theta_{n-1}}-a_{n}\right)+\left(b_{n}-\frac{\phi_{n-1}}{\theta_{n-1}}\right)=\frac{1}{\theta_{n-1}}-\frac{\phi_{n-1}}{\theta_{n-1}}<1
$$

Therefore,

$$
a_{n+1}=\left[\frac{1}{\theta_{n}}\right] \geq b_{n+1}=\left\lceil\frac{\phi_{n}}{\theta_{n}}\right\rceil .
$$

The case $\Gamma_{n} \in \mathcal{B}_{1}$ is proved. If $a_{n+1}>b_{n+1}, \Gamma_{n+1} \in \mathcal{A}_{1,0}$. If $a_{n+1}=b_{n+1}$, $\Gamma_{n+1} \in \mathcal{C}_{2}$.

If $a_{n}<b_{n}$, that is, $\Gamma_{n} \in \mathcal{D}_{1}$, similarly to the case $\Gamma_{n-1} \in \mathcal{C}_{1}$, we get $\theta_{n}+\phi_{n}>1$ and $a_{n+1} \leq b_{n+1}$. The case $\Gamma_{n} \in \mathcal{D}_{1}$ is proved. If $a_{n+1}=b_{n+1}$, $\Gamma_{n+1} \in \mathcal{B}_{1}$. If $a_{n+1}<b_{n+1}, \Gamma_{n+1} \in \mathcal{D}_{1}$ again.

Now, we consider each case for an arbitrary positive integer $k(\geq 2)$. Let $\Gamma_{i-1} \in \mathcal{C}_{k}$ for some integer $i(\geq 6)$. Since $\Gamma_{i-2} \in \mathcal{B}_{k-1}$,

$$
\frac{1}{\theta_{i-2}}-\frac{\phi_{i-2}}{\theta_{i-2}}>1
$$

Hence,

$$
\theta_{i-1}+\phi_{i-1}=\left(\frac{1}{\theta_{i-2}}-a_{i-1}\right)+\left(b_{i-1}-\frac{\phi_{i-2}}{\theta_{i-2}}\right)=\frac{1-\phi_{i-2}}{\theta_{i-2}}>1
$$

or

$$
0<\frac{1}{\theta_{i-1}}-\frac{\phi_{i-1}}{\theta_{i-1}}<1
$$

Therefore, $a_{i} \leq b_{i}$. If $a_{i}=b_{i}, \Gamma_{i} \in \mathcal{B}_{k}$. If $a_{i}<b_{i}, \Gamma_{i} \in \mathcal{D}_{k}$.
The general case $\Gamma_{i} \in \mathcal{B}_{k}$ or $\Gamma_{i} \in \mathcal{D}_{k}$ is treated similarly.
The situation in Lemma 1 is illustrated in Figure 1.
Lemma 2. (1) If $\Gamma_{n-1} \in \mathcal{O}$ or \mathcal{A}, then $\beta_{n-1} \leq q_{n-1}$.
(2) If $\Gamma_{n-2} \in \mathcal{C}_{k}$ and $\Gamma_{n-1} \in \mathcal{B}_{k}$, then $\beta_{n-2 k-1} \leq q_{n-3}$.
(3) If $\Gamma_{n-2} \in \mathcal{D}_{k}$ and $\Gamma_{n-1} \in \mathcal{B}_{1}$, then $\beta_{n-3} \leq q_{n-2}+q_{n-3}$.
(4) If $\Gamma_{n-1} \in \mathcal{C}_{k}$, then $\beta_{n-2 k} \leq q_{n-2}$.
(5) If $\Gamma_{n-1} \in \mathcal{D}_{k}$, then $\beta_{n-2} \leq q_{n-1}+q_{n-2}$.

Proof. If $a_{i} \geq b_{i}$ for any $i=3,4, \ldots, n$, then

$$
\begin{aligned}
\beta_{n} & =\left(b_{n}-1\right) q_{n-1}+b_{n-1} q_{n-2}+\ldots+b_{3} q_{2}+b_{2} q_{1}+1 \\
& \leq\left(a_{n}-1\right) q_{n-1}+a_{n-1} q_{n-2}+\ldots+a_{3} q_{2}+\left(a_{2}+1\right) q_{1}+1=q_{n}
\end{aligned}
$$

The other cases will be proved inductively in the proof of the Proposition.

Lemma 3. (1) If $\Gamma_{n-1} \in \mathcal{O}$ or \mathcal{A} and $a_{n} \geq b_{n}$, then

$$
w_{n} w_{n-1}-w_{n-1} w_{n}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n}
$$

(2) If $\Gamma_{n-1} \in \mathcal{O}$ or \mathcal{A} and $a_{n}<b_{n}$, then

$$
-w_{n} w_{n-1}+w_{n-1} w_{n}=\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-1}
$$

(3) If $\Gamma_{n-1} \in \mathcal{B}_{k}$ and $a_{n}>b_{n}$, then

$$
-w_{n} w_{n-1}+w_{n-1} w_{n}=\underbrace{00 \ldots \ldots .00}_{\left(b_{n}+1\right) q_{n-1}+q_{n-2}} \Delta_{n-2 k-1}
$$

(4) If $\Gamma_{n-1} \in \mathcal{B}_{k}$ and $a_{n}=b_{n}$, then

$$
-w_{n} w_{n-1}+w_{n-1} w_{n}=\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-2 k-1}
$$

(5) If $\Gamma_{n-1} \in \mathcal{C}_{k}$ and $a_{n} \leq b_{n}$, then

$$
w_{n} w_{n-1}-w_{n-1} w_{n}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2 k}
$$

(6) If $\Gamma_{n-1} \in \mathcal{D}_{k}$ and $a_{n} \leq b_{n}$, then

$$
w_{n} w_{n-1}-w_{n-1} w_{n}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2}
$$

Proof. Here, we shall prove only the case when $\Gamma_{n-1} \in \mathcal{O}$ and $a_{n} \geq b_{n}$. The others will be proved inductively in the proof of the Proposition. Both $w_{n-2}^{\prime \prime}$ and $w_{n-1}^{\prime \prime}$ are empty by induction. Set $X=x^{q_{n-1}}$ for brevity. If $a_{n}>b_{n}$, then

$$
\begin{aligned}
P_{n}^{*}(x)= & \left(1+X+\ldots+X^{b_{n}-1}+X^{b_{n}} x^{q_{n-2}}\left(1+X+\ldots+X^{a_{n}-b_{n}-1}\right)\right) \\
& \times P_{n-1}^{*}(x)+X^{b_{n}} P_{n-2}^{*}(x)
\end{aligned}
$$

which yields

$$
P_{n}^{*}=v w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}} .
$$

If $a_{n}=b_{n}$, we have $P_{n}^{*}(x)=\left(1+X+\ldots+X^{b_{n}-1}\right) P_{n-1}^{*}(x)+X^{b_{n}} P_{n-2}^{*}(x)$, yielding $P_{n}^{*}=v w_{n-1}^{b_{n}} \underline{w_{n-2}}$. Hence, we have $w_{n}=w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}}$. Therefore, if n is odd, then

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} w_{n} & =w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}} w_{n-1}-w_{n-1} w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}} \\
& =\underbrace{0 \ldots 0}_{b_{n} q_{n-1}}\left(w_{n-2} w_{n-1}-w_{n-1} w_{n-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{0 \ldots 0}_{b_{n} q_{n-1}}\left(w_{n-2} w_{n-2}^{b_{n-1}} w_{n-3} w_{n-2}^{a_{n-1}-b_{n-1}}-w_{n-2}^{b_{n-1}} w_{n-3} w_{n-2}^{a_{n-1}-b_{n-1}} w_{n-2}\right) \\
& =\underbrace{00 \ldots \ldots \ldots 00}_{b_{n} q_{n-1}+b_{n-1} q_{n-2}}\left(w_{n-2} w_{n-3}-w_{n-3} w_{n-2}\right)=\ldots \\
& =\underbrace{000 \ldots \ldots \ldots \ldots \ldots 000}_{b_{n} q_{n-1}+b_{n-1} q_{n-2}+\ldots+b_{3} q_{2}}\left(w_{1} w_{2}-w_{2} w_{1}\right) \\
& =\underbrace{000 \ldots \ldots \ldots \ldots \ldots .000}_{b_{n} q_{n-1}+b_{n-1} q_{n-2}+\ldots+b_{3} q_{2}}\left(u u^{b_{2}-1} 0 u^{a_{2}-b_{2}+1}-u^{b_{2}-1} 0 u^{a_{2}-b_{2}+1} u\right) \\
& =\underbrace{0000 \ldots \ldots \ldots \ldots}_{b_{n} q_{n-1}+b_{n-1} q_{n-2}+\ldots+b_{3} q_{2}+\left(b_{2}-1\right) q_{1}} \underbrace{0 \ldots 0.0}_{q_{1}-1} 10-0 \underbrace{0 \ldots 0}_{q_{1}-1} 1) \\
& =\underbrace{00 \ldots \ldots .0}_{q_{n-1}+\beta_{n}-2} 1(-1) .
\end{aligned}
$$

If n is even, then w_{1} and w_{2} above are interchanged, so we obtain

$$
\underbrace{00 \ldots \ldots 00}_{q_{n-1}+\beta_{n}-2}(-1) 1
$$

4. Proof of Proposition. We prove the Proposition together with Lemmas 2 and 3. We write $\left[B_{k-1} C_{k} D_{k}\right]$ for brevity when $\Gamma_{n-3} \in \mathcal{B}_{k-1}$, $\Gamma_{n-2} \in \mathcal{C}_{k}$ and $\Gamma_{n-1} \in \mathcal{D}_{k}$. From Lemma 1 all cases are classified into one of $\mathcal{O}, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and the number of patterns like $\left[B_{k-1} C_{k} D_{k}\right]$ is limited.

We denote by S the sequence of the patterns of $\left[\Gamma_{n-3}, \Gamma_{n-2}, \Gamma_{n-1}\right]$.
4.1. Case $\Gamma_{n-1} \in \mathcal{O}$. The only possible pattern is $[O O O]$. Then, both $w_{n-2}^{\prime \prime}$ and $w_{n-1}^{\prime \prime}$ are empty. As we have already seen in the proof of Lemma 3,

$$
w_{n}=w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}} \quad \text { and } \quad w_{n}^{\prime \prime}=\text { empty } \quad \text { if } a_{n} \geq b_{n} .
$$

If $a_{n}=b_{n}-1$, by using Lemma 3(1) with $\Gamma_{n-3} \in \mathcal{O}$ and $\beta_{n-1}=$ $\left(b_{n-1}-1\right) q_{n-2}+q_{n-3}+\beta_{n-2}$ we have $P_{n}^{*}(x)=\left(1+X+\ldots+X^{b_{n}-1}-\right.$ $\left.x^{q_{n}}\right) P_{n-1}^{*}(x)+X^{b_{n}} P_{n-2}^{*}(x)$, which yields

$$
\begin{aligned}
P_{n}^{*} & =v w_{n-1}^{b_{n}} \underline{w_{n-2}}-\underbrace{0 \ldots 0}_{q_{n}} v \underline{w_{n-1}}=v \underbrace{w_{n-1}^{b_{n}}}_{\text {first } q_{n}} w_{n-2}-\underbrace{0 \ldots 0}_{b_{1}+q_{n}} w_{n-1} \\
& =v w_{n-1}^{a_{n}} \underline{w_{n-2}} \underbrace{00 \ldots 00}_{\left(b_{n-1}-1\right) q_{n-2}}\left(w_{n-3} w_{n-2}-w_{n-2} w_{n-3}\right) \\
& =v w_{n-1}^{a_{n}} \underline{w_{n-2}} \Delta_{n-1} .
\end{aligned}
$$

Therefore, $w_{n}=w_{n-1}^{a_{n}} w_{n-2}$ and $w_{n}^{\prime \prime}=\Delta_{n-1}$.

Using the results here and Lemma $3(1)$ with $\Gamma_{n-2} \in \mathcal{O}$, we obtain Lemma 3(2), that is,

$$
\begin{aligned}
-w_{n} w_{n-1}+w_{n-1} w_{n} & =-w_{n-1}^{a_{n}} w_{n-2} w_{n-1}+w_{n-1}^{a_{n}} w_{n-1} w_{n-2} \\
& =\underbrace{0 \ldots 0}_{a_{n} q_{n-1}} \underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-1}=\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-1} .
\end{aligned}
$$

As long as $a_{i} \geq b_{i}$ for $i=3,4, \ldots$, there is no other pattern. But once $a_{n}<b_{n}$ for some n, the pattern $\left[O O C_{1}\right]$ follows [OOO] in the sequence S and the loop starts. The situation after this can be seen in Figure 2. "//" stands for $a_{i} \geq b_{i}$, "/" for $a_{i}>b_{i}$, "一" for $a_{i}=b_{i}$, " " for $a_{i}<b_{i}$. Once we encounter C_{1} (or B_{1}, D_{1}) again, the situation after that is the same as the situation after the first C_{1} (or B_{1}, D_{1}).

We shall indicate the loop in all patterns according to the class of Γ_{n-1}. Some initial cases are omitted, but it is easy to see that they are special cases of the general ones and they are included in them.
4.2. Case $\Gamma_{n-1} \in \mathcal{C}$. From Lemma 1 the possible patterns are

$$
\left[O O C_{1}\right],\left[B_{k} A_{k, 0} C_{1}\right],\left[A_{k, l-1} A_{k, l} C_{1}\right],\left[C_{k} B_{k} C_{k+1}\right],\left[D_{k} B_{1} C_{2}\right]
$$

- $\left[O O C_{1}\right]$. This follows $[O O O]$ in the sequence S.

Since $\Gamma_{n-1}=\varpi_{3} \ldots \varpi_{n-2}(-1)\left(\Gamma_{3}=(-1)\right.$ when $\left.n=4\right), w_{n-2}^{\prime \prime}$ is empty and $w_{n-1}=w_{n-2}^{a_{n-1}} w_{n-3}$ and $w_{n-1}^{\prime \prime}=\Delta_{n-2}$.

If $a_{n}=b_{n}$, we have $P_{n}^{*}(x)=\left(1+X+\ldots+X^{a_{n}-1}\right) P_{n-1}^{*}(x)+X^{a_{n}} P_{n-2}^{*}(x)$. Since the string of coefficients of

$$
\left(1+X+\ldots+X^{b_{n}-1}\right) \times x^{b_{1}} X\left((-1)^{n-1} x^{\beta_{n-2}-1}+(-1)^{n-2} x^{\beta_{n-2}}\right)
$$

is

$$
\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}}
$$

we obtain

$$
P_{n}^{*}=v w_{n-1}^{a_{n}} \underline{w_{n-2}}+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}} .
$$

From Lemma 2(1) with $\Gamma_{n-2} \in \mathcal{O}$ we get $0<\beta_{n-2} \leq q_{n-2}$. Therefore, $w_{n}^{\prime \prime}$ is empty and the conclusion of Lemma 2(4) is satisfied.

If $a_{n}=b_{n}-1$, we have $P_{n}^{*}(x)=\left(1+X+\ldots+X^{b_{n}-1}-x^{q_{n}}\right) P_{n-1}^{*}(x)+$ $X^{b_{n}} P_{n-2}^{*}(x)$. Since the string of coefficients of

$$
\left(1+X+\ldots+X^{b_{n}-1}-x^{q_{n}}\right) \times x^{b_{1}} X\left((-1)^{n-1} x^{\beta_{n-2}-1}+(-1)^{n-2} x^{\beta_{n-2}}\right)
$$

is

$$
\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2}-2}(-1)^{n}(-1)^{n-1}
$$

Fig. 2
we obtain

$$
\begin{aligned}
P_{n}^{*}= & v w_{n-1}^{b_{n}} \underline{w_{n-2}}-\underbrace{0 \ldots 0}_{q_{n}} v \underline{w_{n-1}} \\
& +\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2}-2}(-1)^{n}(-1)^{n-1} .
\end{aligned}
$$

Using Lemma $3(1)$ with $\Gamma_{n-3} \in \mathcal{O}$ gives

$$
\begin{aligned}
w_{n-1}^{b_{n}} \underline{w_{n-2}}- & \underbrace{0 \ldots 01}_{q_{n}} \frac{w_{n-1}}{0}=\underbrace{w_{n-1}^{b_{n}}}_{\text {first } q_{n}} w_{n-2}-\underbrace{0 \ldots 0}_{q_{n}} w_{n-1} \\
& =w_{n-1}^{a_{n}} \underline{w_{n-2}}\left(w_{n-2}^{a_{n-1}-1} w_{n-3} w_{n-2}-w_{n-2}^{a_{n-1}-1} w_{n-2} w_{n-3}\right) \\
& =-w_{n-1}^{a_{n}} \underline{w_{n-2}} \underbrace{00 \ldots \ldots 00}_{\left(a_{n-1}-1\right) q_{n-2}} \underbrace{0 \ldots 0}_{q_{n-3}} \Delta_{n-2} .
\end{aligned}
$$

Since $a_{n} q_{n-1}+q_{n-2}+\left(a_{n-1}-1\right) q_{n-2}+q_{n-3}+\beta_{n-2}=\beta_{n-2}+b_{n} q_{n-1}$, $\beta_{n-2}+a_{n} q_{n-1} \leq q_{n-2}+a_{n} q_{n-1}=q_{n}$ and $\beta_{n-2}+b_{n} q_{n-1}+q_{n-2}=q_{n}+\beta_{n-1}$, we get

$$
w_{n}=w_{n-1}^{a_{n}} w_{n-2}+\underbrace{0 \ldots 0}_{\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}} \quad \text { and } \quad w_{n}^{\prime \prime}=\Delta_{n-1} .
$$

Using Lemma $3(1)$ with $\Gamma_{n-3} \in \mathcal{O}$ again, we finally obtain

$$
\begin{aligned}
w_{n} & =w_{n-2}\left(w_{n-2}^{a_{n-1}-1} w_{n-3} w_{n-2}\right)^{a_{n}}+\underbrace{0 \ldots 0}_{\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}} \\
& =w_{n-2}(w_{n-2}^{a_{n-1}-1}(w_{n-3} w_{n-2}+\underbrace{0 \ldots 0}_{q_{n-3}} \Delta_{n-2}))^{a_{n}} \\
& =w_{n-2}\left(w_{n-2}^{a_{n-1}-1} w_{n-2} w_{n-3}\right)^{a_{n}}=w_{n-2} w_{n-1}^{a_{n}} .
\end{aligned}
$$

The conclusion of Lemma 3(5) is proved in this case, because

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} w_{n} & =w_{n-2} w_{n-1}^{a_{n}} w_{n-1}-w_{n-1} w_{n-2} w_{n-1}^{a_{n}} \\
& =w_{n-2} w_{n-1}-w_{n-1} w_{n-2}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2} .
\end{aligned}
$$

- $\left[B_{k} A_{k, 0} C_{1}\right]$. This follows $\left[C_{k} B_{k} A_{k, 0}\right]$ or $\left[D_{k} B_{1} A_{1,0}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-1} \pi_{n-2}(-1), w_{n-2}^{\prime \prime}$ is empty and $w_{n-1}^{\prime \prime}=$ Δ_{n-2} and $w_{n-1}=w_{n-2}^{a_{n-1}} w_{n-3}$. From Lemma $2(1)$ with $\Gamma_{n-2} \in \mathcal{A}, \beta_{n-2}=$ $b_{n-2} q_{n-3}+q_{n-4}+\beta_{n-2 k-3} \leq q_{n-2}$.

If $a_{n}=b_{n}$, then similarly to [OOC C_{1},

$$
w_{n}=w_{n-1}^{b_{n}} w_{n-2}+\underbrace{0 \ldots 0}_{\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}}=w_{n-2} w_{n-1}^{a_{n}} .
$$

Here we used instead

$$
\begin{aligned}
w_{n-3} w_{n-2}+\underbrace{0 \ldots 0}_{q_{n-3}} \Delta_{n-2} & =w_{n-3} w_{n-2}-\underbrace{00 \ldots \ldots \ldots 00}_{\left(b_{n-2}+1\right) q_{n-3}+q_{n-4}} \Delta_{n-2 k-3} \\
& =w_{n-2} w_{n-3}
\end{aligned}
$$

from Lemma $3(3)$ with $\Gamma_{n-3} \in \mathcal{B}_{k}$.
If $a_{n}<b_{n}$, then by using Lemma $3(3)$ with $\Gamma_{n-3} \in \mathcal{B}_{k}$,

$$
\begin{aligned}
& P_{n}^{*}= v w_{n-1}^{a_{n}} w_{n-2}^{w_{n-2}}\left(w_{n-2}^{a_{n-1}-1} w_{n-3} w_{n-2}-w_{n-2}^{a_{n-1}-1} w_{n-2} w_{n-3}\right) \\
&+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2}-2}(-1)^{n}(-1)^{n-1} \\
&= v w_{n-1}^{a_{n}} \underbrace{w_{n-2}}_{n-2} \underbrace{00 \ldots \ldots \ldots 00}_{\left(a_{n-1}-1\right) q_{n-2}} \underbrace{00 \ldots \ldots \ldots 00}_{\left(b_{n-2}+1\right) q_{n-3}+q_{n-4}} \Delta_{n-2 k-3} \\
&+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2-2}}(-1)^{n}(-1)^{n-1} \\
&= v w_{n-1}^{a_{n}}{\underline{w_{n-2}} \Delta_{n-1}+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}}}_{=} \\
& v w_{n-2} \underline{w n-1}_{w_{n}}^{a_{n}} \Delta_{n-1},
\end{aligned}
$$

because $b_{n} q_{n-1}+\beta_{n-2}=q_{n}+\left(a_{n-1}-1\right) q_{n-2}+\left(b_{n-2}+1\right) q_{n-3}+q_{n-4}+$ $\beta_{n-2 k-3}, \beta_{n-2}<q_{n-2}$ and $b_{n} q_{n-1}+q_{n-2}+\beta_{n-2}=q_{n}+\beta_{n-1}$.

Thus the assertion of Lemma 3(5) is proved because by Lemma 3(2) with $\Gamma_{n-2} \in \mathcal{A}$,

$$
w_{n} w_{n-1}-w_{n-1} w_{n}=w_{n-2} w_{n-1}^{a_{n}} w_{n-1}-w_{n-1} w_{n-2} w_{n-1}^{a_{n}}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2} .
$$

- $\left[A_{k, l-1} A_{k, l} C_{1}\right]$. This follows $\left[B_{k} A_{k, 0} A_{k, 1}\right]$ or $\left[A_{k, l-2} A_{k, l-1} A_{k, l}\right]$ in the sequence S.

We use Lemma 3(1) with $\Gamma_{n-3} \in \mathcal{A}$ instead of Lemma 3(3) with $\Gamma_{n-3} \in$ \mathcal{B}_{k}. The rest of the proof is much the same as in the case $\left[B_{k} A_{k, 0} C_{1}\right]$.

- $\left[C_{k} B_{k} C_{k+1}\right]$. This follows $\left[O C_{1} B_{1}\right],\left[A_{k, l} C_{1} B_{1}\right]$ or $\left[B_{k-1} C_{k} B_{k}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k}, w_{n-2}^{\prime \prime}$ is empty and $w_{n-1}=w_{n-2}^{b_{n-1}} w_{n-3}$ and $w_{n-1}^{\prime \prime}=\Delta_{n-2 k-2}$. Moreover, $\beta_{n-2 k-2}=\beta_{n-1}-q_{n-1} \leq q_{n-4}$ from Lemma 2(2) with $\Gamma_{n-3} \in \mathcal{C}_{k}$. So, Lemma 2(4) with $\Gamma_{n-1} \in \mathcal{C}_{k+1}$ holds.

If $a_{n}=b_{n}$, then from Lemma $3(5)$ with $\Gamma_{n-3} \in \mathcal{C}_{k}$,

$$
w_{n}=w_{n-1}^{b_{n}} w_{n-2}+\underbrace{0 \ldots \ldots 0}_{\beta_{n-2 k-2} \ldots 0}(-1)^{n-1}(-1)^{n})^{b_{n}}=w_{n-2} w_{n-1}^{a_{n}}
$$

and $w_{n}^{\prime \prime}$ is empty.

If $a_{n}=b_{n}-1$, then

$$
\begin{aligned}
P_{n}^{*}= & v w_{n-1}^{a_{n}} \underline{w_{n-2}}\left(w_{n-2}^{b_{n-1}-1} w_{n-3} w_{n-2}-w_{n-2}^{b_{n-1}-1} w_{n-2} w_{n-3}\right) \\
& +\underbrace{00 \ldots \ldots 00}_{b_{1}+\beta_{n-2 k-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2}-2}(-1)^{n}(-1)^{n-1} .
\end{aligned}
$$

Since $q_{n}+\left(b_{n-1}-1\right) q_{n-2}+\beta_{n-2 k-2}+q_{n-3}=\beta_{n-2 k-2}+b_{n} q_{n-1}, \beta_{n-2 k-2}+$ $a_{n} q_{n-1}<q_{n-2}+a_{n} q_{n-1}=q_{n}$ and $\beta_{n-2 k-2}+b_{n} q_{n-1}+q_{n-2}=q_{n}+\beta_{n-1}$, similarly using Lemma $3(5)$ with $\Gamma_{n-3} \in \mathcal{C}_{k}$ we can obtain the result.

The assertion of Lemma 3(5) holds in this case, because by Lemma 3(4) with $\Gamma_{n-2} \in \mathcal{B}_{k}$,

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} w_{n} & =w_{n-2} w_{n-1}^{a_{n}} w_{n-1}-w_{n-1} w_{n-2} w_{n-1}^{a_{n}} \\
& =\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2 k-2} .
\end{aligned}
$$

- $\left[D_{k} B_{1} C_{2}\right]$. This follows $\left[C_{k} D_{k} B_{1}\right]$ or $\left[D_{k} D_{1} B_{1}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1) 00, w_{n-2}^{\prime \prime}$ is empty and $w_{n-1}^{\prime \prime}=\Delta_{n-4}$ and $w_{n-1}=w_{n-2}^{a_{n-1}} w_{n-3}$. From Lemma 2(3) with $\Gamma_{n-3} \in \mathcal{D}_{k}, \beta_{n-4} \leq q_{n-3}+$ $q_{n-4} \leq q_{n-2}$. We use Lemma 3(6) with $\Gamma_{n-3} \in \mathcal{C}_{k}$ instead of Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{D}_{l}$. The rest of the proof is much the same as in the case [$C_{k} B_{k} C_{k+1}$] when $k=1$.
4.3. Case $\Gamma_{n-1} \in \mathcal{D}$. From Lemma 1 the possible patterns are

$$
\left[O C_{1} D_{1}\right],\left[A_{k, l} C_{1} D_{1}\right],\left[B_{k-1} C_{k} D_{k}\right],\left[C_{k} D_{k} D_{1}\right],\left[D_{k} D_{1} D_{1}\right] .
$$

- $\left[O C_{1} D_{1}\right]$. This follows $\left[O O C_{1}\right]$ in the sequence S.

Since $\Gamma_{n-1}=\varpi_{3} \ldots \varpi_{n-3}(-1)(-1)$, we get $w_{n-2}^{\prime \prime}=\Delta_{n-3}, w_{n-1}=$ $w_{n-3} w_{n-2}^{a_{n-1}}$ and $w_{n-1}^{\prime \prime}=\Delta_{n-2}$.

If $a_{n}=b_{n}$, then
$P_{n}^{*}=v w_{n-1}^{b_{n}} \underline{w}_{n-2}+\underbrace{00 \ldots \ldots .00}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3}+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}}$.
Since $\beta_{n-2}=q_{n-2}+\beta_{n-3} \leq q_{n-2}+q_{n-3}<q_{n-1}+q_{n-2}$ (so, the assertion of Lemma 2(5) holds) and $\beta_{n-2}+\left(b_{n}-1\right) q_{n-1}<q_{n}$, we obtain $w_{n}=w_{n-1}^{a_{n}} w_{n-2}+\underbrace{0 \ldots 0}_{\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}-1} \quad$ and $\quad w_{n}^{\prime \prime}=$ empty.

If $a_{n}=b_{n}-1$, then

$$
\begin{aligned}
P_{n}^{*}= & v \underbrace{v w_{n-1}^{b_{n}}}_{\text {first } q_{n}} w_{n-2}-\underbrace{0 \ldots 0}_{b_{1}+q_{n}} w_{n-1}+\underbrace{00 \ldots \ldots .00}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3} \\
& +\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2}-2}(-1)^{n}(-1)^{n-1}
\end{aligned}
$$

Since from Lemma $3(2)$ with $\Gamma_{n-3} \in \mathcal{O}$,

$$
\begin{aligned}
w_{n-1}^{b_{n}} w_{n-2} & -\underbrace{0 \ldots 0}_{q_{n}} w_{n-1} \\
& =w_{n-1}^{a_{n}} w_{n-3} w_{n-2}^{a_{n-1}} w_{n-2}-\underbrace{0 \ldots 0}_{q_{n}} w_{n-3} w_{n-2}^{a_{n-1}} \\
& =w_{n-1}^{a_{n}}(w_{n-2} w_{n-3}+\underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-3}) w_{n-2}^{a_{n-1}}-\underbrace{0 \ldots 0}_{q_{n}} w_{n-3} w_{n-2}^{a_{n-1}},
\end{aligned}
$$

we have

$$
\underbrace{w_{n-1}^{b_{n}}}_{\text {first } q_{n}} w_{n-2}-\underbrace{0 \ldots 0}_{q_{n}} w_{n-1}=w_{n-1}^{a_{n}} \underline{w_{n-2}} \Delta_{n-3}
$$

Since $\beta_{n-2}+b_{n} q_{n-1}=b_{n} q_{n-1}+q_{n-2}+\beta_{n-3}, \beta_{n-2}+a_{n} q_{n-1}=q_{n}+\beta_{n-3}$, $\beta_{n-2}+\left(a_{n}-1\right) q_{n-1}<q_{n}$ and $\beta_{n-2}+b_{n} q_{n-1}+q_{n-2}=q_{n}+\beta_{n-1}$, we get

$$
w_{n}=w_{n-1}^{a_{n}} w_{n-2}+\underbrace{0 \ldots 0}_{\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}-1} \quad \text { and } \quad w_{n}^{\prime \prime}=\text { empty }
$$

Using Lemma $3(2)$ with $\Gamma_{n-3} \in \mathcal{O}$ again and $-\Delta_{n-2}=\underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-3}$, we finally obtain

$$
\begin{aligned}
w_{n} & =w_{n-1}\left(\left(w_{n-3} w_{n-2}+\Delta_{n-2}\right) w_{n-2}^{a_{n-1}-1}\right)^{a_{n}-1} w_{n-2} \\
& =w_{n-1}\left(w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-1}\right)^{a_{n}-1} w_{n-2} \\
& =w_{n-1} w_{n-2}\left(w_{n-3} w_{n-2}^{a_{n-1}}\right)^{a_{n}-1}=w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1} .
\end{aligned}
$$

The assertion of Lemma 3(6) holds in this case, because by Lemma 3(5) with $\Gamma_{n-2} \in \mathcal{C}_{1}$,

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} w_{n} & =w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1} w_{n-1}-w_{n-1} w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1} \\
& =\underbrace{0 \ldots 0}_{q_{n-1}}\left(w_{n-2} w_{n-1}-w_{n-1} w_{n-2}\right) \\
& =-\underbrace{0 \ldots 0}_{q_{n-1}} \underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-3}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2} .
\end{aligned}
$$

- $\left[A_{k, l} C_{1} D_{1}\right]$. This follows $\left[A_{k, l-1} A_{k, l} C_{1}\right]$ or $\left[B_{k} A_{k, 0} C_{1}\right]$ in the sequence S.

This case is similar to $\left[O C_{1} D_{1}\right]$.

- $\left[B_{k-1} C_{k} D_{k}\right]$. This follows $\left[C_{k} B_{k} C_{k+1}\right]$ or $\left[D_{k} B_{1} C_{2}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1)$, we have $w_{n-2}^{\prime \prime}=\Delta_{n-2 k-1}, w_{n-1}^{\prime \prime}=$ Δ_{n-2} and $w_{n-1}=w_{n-3} w_{n-2}^{a_{n-1}}$. From Lemma 2(4) with $\Gamma_{n-2} \in \mathcal{C}_{k}$ we have

$$
\beta_{n-2}=q_{n-2}+\beta_{n-2 k-1} \leq q_{n-2}+q_{n-3} \leq q_{n-1}+q_{n-2} .
$$

We use

$$
w_{n-3} w_{n-2}+\Delta_{n-2}=w_{n-3} w_{n-2}-\underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-2 k-1}=w_{n-2} w_{n-3}
$$

from Lemma $3(4)$ with $\Gamma_{n-3} \in \mathcal{B}_{k-1}$. The rest of the proof is much the same as in the case $\left[O C_{1} D_{1}\right]$.

- $\left[C_{k} D_{k} D_{1}\right]$. This follows $\left[O C_{1} D_{1}\right],\left[A_{k, l} C_{1} D_{1}\right]$ or $\left[B_{k-1} C_{k} D_{k}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1)(-1)$, we have $w_{n-2}^{\prime \prime}=\Delta_{n-3}, w_{n-1}^{\prime \prime}=$ Δ_{n-2} and $w_{n-1}=w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-1}$. We also have

$$
\beta_{n-2}=q_{n-2}+\beta_{n-3} \leq q_{n-2}+q_{n-2}+q_{n-3} \leq q_{n-1}+q_{n-2}
$$

So the assertion of Lemma 2(5) is satisfied.
If $a_{n}=b_{n}$, then

$$
\begin{aligned}
P_{n}^{*}= & v w_{n-1}^{a_{n}} \underline{w}_{n-2}+\underbrace{00 \ldots \ldots}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3} \\
& +\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}} \\
= & v w_{n-1}^{a_{n}} \underline{w n}_{n-2}+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}-1} .
\end{aligned}
$$

Since $\beta_{n-2}=q_{n-2}+q_{n-3}+\beta_{n-2 k-2}$, we have

$$
\begin{aligned}
w_{n} & =w_{n-1} w_{n-2}((w_{n-3} w_{n-2}+\underbrace{0 \ldots 0}_{q_{n-3}} \Delta_{n-2 k-2}) w_{n-2}^{a_{n-1}-1})^{a_{n}-1} \\
& =w_{n-1} w_{n-2}\left(w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-1}\right)^{a_{n}-1}=w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1}
\end{aligned}
$$

and $w_{n}^{\prime \prime}$ is empty.
If $a_{n}<b_{n}$, by Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{C}_{k}$ and $\beta_{n-3}=q_{n-3}+\beta_{n-2 k-2}$ we get

$$
\begin{aligned}
& \underbrace{w_{n-1}^{b_{n}}}_{\text {first } q_{n}} w_{n-2}-\underbrace{0 \ldots 0}_{q_{n}} w_{n-1} \\
&= w_{n-1}^{a_{n}} \underline{w_{n-2}}\left(w_{n-2}^{a_{n-1}-1} w_{n-3} w_{n-2}-w_{n-2}^{a_{n-1}-1} w_{n-2} w_{n-3}\right. \\
&+\underbrace{0 \ldots 0}_{\beta_{n-3}-2}(-1)^{n}(-1)^{n-1} \underbrace{00 \ldots \ldots \ldots 00}_{\left(a_{n-1}-1\right) q_{n-2}-2}(-1)^{n-1}(-1)^{n})
\end{aligned}
$$

$$
\begin{aligned}
= & w_{n-1}^{a_{n}} \underline{w_{n-2}}(-\underbrace{00 \ldots \ldots \ldots \ldots 00}_{\left(a_{n-1}-1\right) q_{n-2}+q_{n-3}} \Delta_{n-2 k-2} \\
& +\Delta_{n-3} \underbrace{00 \ldots \ldots \ldots 00}_{\left(a_{n-1}-1\right) q_{n-2}-2}(-1)^{n-1}(-1)^{n}) \\
= & w_{n-1}^{a_{n}} \underline{w_{n-2}} \Delta_{n-3} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
P_{n}^{*}= & v w_{n-1}^{a_{n}} \underline{w n}_{n-2} \Delta_{n-3}+\underbrace{00 \ldots \ldots 0}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3} \\
& +\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{b_{n}} \underbrace{0 \ldots 0}_{q_{n-2}-2}(-1)^{n}(-1)^{n-1} \\
= & v w_{n-1}^{a_{n}} \frac{w_{n-2}}{0} \Delta_{n-1}+\underbrace{0 \ldots 0}_{b_{1}+\beta_{n-2}}(\underbrace{0 \ldots 0}_{q_{n-1}-2}(-1)^{n-1}(-1)^{n})^{a_{n}-1},
\end{aligned}
$$

since $\beta_{n-2}=q_{n-2}+\beta_{n-3}$ and $\beta_{n-1}=q_{n-1}+\beta_{n-2}$. The remaining part is similarly shown. Lemma 3(6) holds in this case, because by Lemma 3(6) with $\Gamma_{n-2} \in \mathcal{D}_{k}$,

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} & w_{n} \\
& =w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1} w_{n-1}-w_{n-1} w_{n-1} w_{n-2} w_{n-1}^{a_{n}-1} \\
& =\underbrace{0 \ldots 0}_{q_{n-1}}\left(w_{n-2} w_{n-1}-w_{n-1} w_{n-2}\right) \\
& =\underbrace{0 \ldots 0}_{q_{n-1}} \underbrace{0 \ldots 0}_{q_{n-2}} \underbrace{0 \ldots 0}_{\beta_{n-3}-2}(-1)^{n-3}(-1)^{n-2}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n-2} .
\end{aligned}
$$

- $\left[D_{k} D_{1} D_{1}\right]$. This follows $\left[C_{k} D_{k} D_{1}\right]$ or $\left[D_{k} D_{1} D_{1}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1)(-1)(-1)$, we have $w_{n-2}^{\prime \prime}=\Delta_{n-3}$, $w_{n-1}^{\prime \prime}=\Delta_{n-2}$ and $w_{n-1}=w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-1}$. We use Lemma 3(6) with $\Gamma_{n-3} \in \mathcal{D}_{k}$ instead of Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{C}_{k}$. The rest of the proof is much the same as in the case $\left[C_{k} D_{k} D_{1}\right]$ when $k=1$.
4.4. Case $\Gamma_{n-1} \in \mathcal{B}$. From Lemma 1 the possible patterns are

$$
\left[O C_{1} B_{1}\right],\left[A_{k, l} C_{1} B_{1}\right],\left[B_{k-1} C_{k} B_{k}\right],\left[C_{k} D_{k} B_{1}\right],\left[D_{k} D_{1} B_{1}\right] .
$$

- $\left[O C_{1} B_{1}\right]$. This follows $\left[O O C_{1}\right]$ in the sequence S.

Since $\Gamma_{n-1}=\varpi_{3} \ldots \varpi_{n-3}(-1) 0$, we have $w_{n-2}^{\prime \prime}=\Delta_{n-3}, w_{n-1}=$ $w_{n-3} w_{n-2}^{a_{n-1}}$ and $w_{n-1}^{\prime \prime}$ is empty.

If $a_{n}>b_{n}$, we have

$$
\begin{aligned}
P_{n}^{*}(x)= & \left(1+X+\ldots+X^{b_{n}-1}+X^{b_{n}} x^{q_{n-2}}\left(1+X+\ldots+X^{a_{n}-b_{n}-1}\right)\right) \\
& \times P_{n-1}^{*}(x)+X^{b_{n}} P_{n-2}^{*}(x),
\end{aligned}
$$

which yields

$$
P_{n}^{*}=v w_{n-1}^{b_{n}} w_{n-2} \underbrace{w_{n}^{a_{n}-b_{n}}}_{n-1}+\underbrace{00 \ldots \ldots 00}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3} .
$$

Since $\beta_{n-3} \leq q_{n-3}<\left(a_{n}-b_{n}\right) q_{n-1}$ from Lemma 2(4) with $\Gamma_{n-2} \in \mathcal{C}_{1}$, using Lemma 3(2) with $\Gamma_{n-3} \in \mathcal{O}$ we obtain

$$
\begin{aligned}
w_{n} & =w_{n-1}^{b_{n}}(w_{n-2} w_{n-3}+\underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-3}) w_{n-2}^{a_{n-1}} w_{n-1}^{a_{n}-b_{n}-1} \\
& =w_{n-1}^{b_{n}} w_{n-3} w_{n-2} w_{n-2}^{a_{n-1}} w_{n-1}^{a_{n}-b_{n}-1} \\
& =w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1}
\end{aligned}
$$

and the assertion of Lemma 2(2) is satisfied.
The conclusion of Lemma 3(3) holds in this case, because by Lemma 3(5) with $\Gamma_{n-2} \in \mathcal{C}_{1}$ we get

$$
\begin{aligned}
& -w_{n} w_{n-1}+w_{n-1} w_{n} \\
& \quad=-w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1} w_{n-1}+w_{n-1} w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1} \\
& \quad=\underbrace{0 \ldots \ldots \ldots 0}_{\left(b_{n}+1\right) q_{n-1}}\left(w_{n-1} w_{n-2}-w_{n-2} w_{n-1}\right)=\underbrace{00 \ldots \ldots \ldots 00}_{\left(b_{n}+1\right) q_{n-1}+q_{n-2}} \Delta_{n-3} .
\end{aligned}
$$

If $a_{n}=b_{n}$, then

$$
P_{n}^{*}(x)=\left(1+X+\ldots+X^{b_{n}-1}\right) P_{n-1}^{*}(x)+X^{b_{n}} P_{n-2}^{*}(x),
$$

yielding

$$
P_{n}^{*}=v w_{n-1}^{b_{n}} \underline{w_{n-2}}+\underbrace{00 \ldots \ldots .00}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3}
$$

From $b_{n} q_{n-1}+q_{n-2}=q_{n}$ we obtain

$$
w_{n}=w_{n-1}^{a_{n}} w_{n-2} \quad \text { and } \quad w_{n}^{\prime \prime}=\text { empty } .
$$

The conclusion of Lemma 3(4) holds in this case, because by Lemma 3(5) with $\Gamma_{n-2} \in \mathcal{C}_{1}$

$$
\begin{aligned}
-w_{n} w_{n-1}+w_{n-1} w_{n} & =-w_{n-1}^{b_{n}} w_{n-2} w_{n-1}+w_{n-1}^{b_{n}} w_{n-1} w_{n-2} \\
& =\underbrace{0 \ldots 0}_{b_{n} q_{n-1}} \underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-3}=\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-3}
\end{aligned}
$$

- $\left[A_{k, l} C_{1} B_{1}\right]$. This follows $\left[A_{k, l-1} A_{k, l} C_{1}\right]$ or $\left[B_{k} A_{k, 0} C_{1}\right]$ in the sequence S.

This case is similar to $\left[O C_{1} B_{1}\right]$.

- $\left[B_{k-1} C_{k} B_{k}\right]$. This follows $\left[C_{k} B_{k} C_{k+1}\right]$ or $\left[D_{k} B_{1} C_{2}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-1}$, we have $w_{n-2}^{\prime \prime}=\Delta_{n-2 k-1}, w_{n-1}=$ $w_{n-3} w_{n-2}^{a_{n-1}}$ and $w_{n-1}^{\prime \prime}$ is empty. Lemma 2(2) is obvious from Lemma 2(4) with $\Gamma_{n-2} \in \mathcal{C}_{k}$.

If $a_{n}>b_{n}$, we use

$$
w_{n-3} w_{n-2}+\Delta_{n-2}=w_{n-3} w_{n-2}-\underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-2 k-1}=w_{n-2} w_{n-3}
$$

because of Lemma 3(4) with $\Gamma_{n-3} \in \mathcal{B}_{k-1}$ and $\beta_{n-2}=q_{n-2}+\beta_{n-2 k-1}$. The rest of the proof is much the same as in the case $\left[O C_{1} B_{1}\right]$ but with $\Delta_{n-2 k-1}$ instead of Δ_{n-3}.

- $\left[C_{k} D_{k} B_{1}\right]$. This follows $\left[O C_{1} D_{1}\right],\left[A_{k, l} C_{1} D_{1}\right]$ or $\left[B_{k-1} C_{k} D_{k}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1) 0$, we have $w_{n-2}^{\prime \prime}=\Delta_{n-3}, w_{n-1}^{\prime \prime}$ is empty and $w_{n-1}=w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-1}$. We also have $\beta_{n-3}=q_{n-3}+\beta_{n-2 k-2}$ $\leq q_{n-2}+q_{n-3}$. So, the conclusion of Lemma 2(3) is satisfied.

It is clear that

$$
P_{n}^{*}=v w_{n-1}^{b_{n}} \underline{w_{n-2} w_{n-1}^{a_{n}-b_{n}}}+\underbrace{00 \ldots \ldots \ldots 00}_{b_{1}+b_{n} q_{n-1}+q_{n-2}} \Delta_{n-3} .
$$

Thus, if $a_{n}>b_{n}$, since

$$
w_{n-2} w_{n-3}-w_{n-3} w_{n-2}=\underbrace{0 \ldots 0}_{q_{n-3}} \Delta_{n-2 k-2}=-\Delta_{n-3}
$$

from Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{C}_{k}$, we obtain

$$
\begin{aligned}
w_{n} & =w_{n-1}^{b_{n}} w_{n-2}\left(w_{n-2} w_{n-3}+\Delta_{n-3}\right) w_{n-2}^{a_{n-1}-1} w_{n-1}^{a_{n}-b_{n}-1} \\
& =w_{n-1}^{b_{n}} w_{n-2} w_{n-3} w_{n-2} w_{n-2}^{a_{n-1}-1} w_{n-1}^{a_{n}-b_{n}-1} \\
& =w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1}
\end{aligned}
$$

and $w_{n}^{\prime \prime}$ is empty.
The assertion of Lemma 3(3) holds in this case, because by Lemma 3(6) with $\Gamma_{n-2} \in \mathcal{D}_{k}$,

$$
\begin{aligned}
-w_{n} & w_{n-1}+w_{n-1} w_{n} \\
& =-w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1} w_{n-1}+w_{n-1} w_{n-1}^{b_{n}+1} w_{n-2} w_{n-1}^{a_{n}-b_{n}-1} \\
& =\underbrace{00 \ldots \ldots 00}_{\left(b_{n}+1\right) q_{n-1}}\left(w_{n-1} w_{n-2}-w_{n-2} w_{n-1}\right)=\underbrace{00 \ldots \ldots \ldots 0}_{\left(b_{n}+1\right) q_{n-1}+q_{n-2}} \Delta_{n-3} .
\end{aligned}
$$

When $a_{n}=b_{n}, w_{n}=w_{n-1}^{b_{n}} w_{n-2}$ and $w_{n}^{\prime \prime}=\Delta_{n-3}$.
The assertion of Lemma 3(4) holds in this case, because by Lemma 3(6) with $\Gamma_{n-2} \in \mathcal{D}_{k}$,

$$
\begin{aligned}
-w_{n} w_{n-1}+w_{n-1} w_{n} & =-w_{n-1}^{b_{n}} w_{n-2} w_{n-1}+w_{n-1}^{b_{n}} w_{n-1} w_{n-2} \\
& =\underbrace{0 \ldots 0}_{b_{n} q_{n-1}} \underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-3}=\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-3}
\end{aligned}
$$

- $\left[D_{k} D_{1} B_{1}\right]$. This follows $\left[C_{k} D_{k} D_{1}\right]$ or $\left[D_{k} D_{1} D_{1}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1)(-1) 0, w_{n-2}^{\prime \prime}=\Delta_{n-3}$ and $w_{n-1}^{\prime \prime}$ is empty and $w_{n-1}=w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-1}$. It is clear that $\beta_{n-3} \leq q_{n-2}+q_{n-3}$. We use Lemma 3(6) with $\Gamma_{n-3} \in \mathcal{D}_{k}$ instead of Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{C}_{k}$. The rest of the proof is much the same as in the case $\left[C_{k} D_{k} B_{1}\right]$ when $k=1$.
4.5. Case $\Gamma_{n-1} \in \mathcal{A}$. From Lemma 1 the possible patterns are

$$
\left[C_{k} B_{k} A_{k, 0}\right],\left[D_{k} B_{1} A_{1,0}\right],\left[B_{k} A_{k, 0} A_{k, 1}\right],\left[A_{k, l-2} A_{k, l-1} A_{k, l}\right] .
$$

- $\left[C_{k} B_{k} A_{k, 0}\right]$. This follows $\left[O C_{1} B_{1}\right],\left[A_{k, l} C_{1} B_{1}\right]$ or $\left[B_{k-1} C_{k} B_{k}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-1} \pi_{n-1}$, both $w_{n-2}^{\prime \prime}$ and $w_{n-1}^{\prime \prime}$ are empty and $w_{n-1}=w_{n-2}^{b_{n-1}+1} w_{n-3} w_{n-2}^{a_{n-1}-b_{n-1}-1}$. Now, from Lemma 2(2) with Γ_{n-3} $\in \mathcal{C}_{k}$,

$$
\begin{aligned}
\beta_{n-1}= & \left(b_{n-1}-1\right) q_{n-2}+b_{n-2} q_{n-3}+\ldots+b_{n-2 k} q_{n-2 k-1} \\
& +b_{n-2 k-1} q_{n-2 k-2}+q_{n-2 k-3}+\beta_{n-2 k-2} \\
= & b_{n-1} q_{n-2}+q_{n-3}+\beta_{n-2 k-2} \\
\leq & \left(a_{n-1}-1\right) q_{n-2}+q_{n-3}+q_{n-4}<q_{n-1},
\end{aligned}
$$

so the conclusion of Lemma 2(1) is satisfied.
If $a_{n} \geq b_{n}$, then

$$
P_{n}^{*}=v w_{n-1}^{b_{n}} \underline{w_{n-2} w_{n-1}^{a_{n}-b_{n}}} .
$$

Hence, we have the result.
The conclusion of Lemma 3(1) holds in this case, because from Lemma $3(3)$ with $\Gamma_{n-2} \in \mathcal{B}_{k}$ we have

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} w_{n} & \\
& =w_{n-1}^{b_{n}} w_{n-2} w_{n-1} w_{n-1}^{a_{n}-b_{n}}-w_{n-1}^{b_{n}} w_{n-1} w_{n-2} w_{n-1}^{a_{n}-b_{n}} \\
& =\underbrace{0 \ldots 0}_{b_{n} q_{n-1}} \underbrace{00 \ldots \ldots \ldots 00}_{\left(b_{n-1}+1\right) q_{n-2}+q_{n-3}} \Delta_{n-2 k-2}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n} .
\end{aligned}
$$

If $a_{n}=b_{n}-1$, then by Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{C}_{k}$,

$$
w_{n-3} w_{n-2}-w_{n-2} w_{n-3}=\underbrace{0 \ldots 0}_{q_{n-3}} \underbrace{0 \ldots 0}_{\beta_{n-2 k}-2}(-1)^{n}(-1)^{n-1} .
$$

Hence,

$$
\begin{aligned}
w_{n}^{\prime \prime}= & w_{n-2}^{b_{n-1}-1} w_{n-3} w_{n-2} w_{n-2}^{a_{n-1}-b_{n-1}}-w_{n-2}^{b_{n-1}-1} w_{n-2} w_{n-3} w_{n-2}^{a_{n-1}-b_{n-1}} \\
& +\underbrace{00 \ldots \ldots \ldots \ldots .00}_{\left(b_{n-1}-1\right) q_{n-2}+q_{n-3}} \Delta_{n-2 k-2}-\underbrace{00 \ldots \ldots \ldots 00}_{b_{n-1} q_{n-2}+q_{n-3}} \Delta_{n-2 k-2} \\
= & \Delta_{n-1} .
\end{aligned}
$$

It is easy to get $w_{n}=w_{n-1}^{a_{n}} w_{n-2}$.

The conclusion of Lemma 3(2) holds in this case, because from Lemma $3(3)$ with $\Gamma_{n-2} \in \mathcal{B}_{k}$,

$$
\begin{aligned}
-w_{n} w_{n-1}+w_{n-1} w_{n} & =-w_{n-1}^{a_{n}} w_{n-2} w_{n-1}+w_{n-1}^{a_{n}} w_{n-1} w_{n-2} \\
& =-(\underbrace{000 \ldots \ldots \ldots \ldots \ldots 000}_{a_{n} q_{n-1}+\left(b_{n-1}+1\right) q_{n-2}+q_{n-3}} \Delta_{n-2 k-2}) \\
& =\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-1} .
\end{aligned}
$$

- $\left[D_{k} B_{1} A_{1,0}\right]$. This follows $\left[O C_{1} B_{1}\right],\left[A_{k, l} C_{1} B_{1}\right]$ or $\left[B_{k-1} C_{k} B_{k}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-2}(-1) 0 \pi_{n-1}$, both $w_{n-2}^{\prime \prime}$ and $w_{n-1}^{\prime \prime}$ are empty and $w_{n-1}=w_{n-2}^{b_{n-1}+1} w_{n-3} w_{n-2}^{a_{n-1}-b_{n-1}-1}$. From Lemma 2(3) with $\Gamma_{n-3} \in \mathcal{D}_{k}$,

$$
\begin{aligned}
\beta_{n-1} & =b_{n-1} q_{n-2}+q_{n-3}+\beta_{n-4} \\
& \leq q_{n-1}-q_{n-2}+q_{n-3}+q_{n-4}<q_{n-1} .
\end{aligned}
$$

We use Lemma 3(6) with $\Gamma_{n-3} \in \mathcal{D}_{k}$, which is the same as Lemma 3(5) with $\Gamma_{n-3} \in \mathcal{C}_{k}$ when $k=1$. The rest of the proof is much the same as in the case $\left[C_{k} B_{k} A_{k, 0}\right]$.

- $\left[B_{k} A_{k, 0} A_{k, 1}\right]$. This follows $\left[C_{k} B_{k} A_{k, 0}\right]$ or $\left[D_{k} B_{1} A_{1,0}\right]$ in the sequence S.

Since Γ_{n-1} ends in $(-1) 0^{2 k-1} \pi_{n-2} \varpi_{n-1}$, both $w_{n-2}^{\prime \prime}$ and $w_{n-1}^{\prime \prime}$ are empty and $w_{n-1}=w_{n-2}^{b_{n-1}} w_{n-3}$. Moreover, $\beta_{n-1}=\left(b_{n-1}-1\right) q_{n-2}+\beta_{n-2}+q_{n-3} \leq$ $q_{n-1}-q_{n-2}+\beta_{n-2} \leq q_{n-1}$. So the conclusion of Lemma 2(1) is satisfied again.

If $a_{n} \geq b_{n}$, then it is clear that

$$
w_{n}=w_{n-1}^{b_{n}} w_{n-2} w_{n-1}^{a_{n}-b_{n}} \quad \text { and } \quad w_{n}^{\prime \prime} \text { is empty. }
$$

The assertion of Lemma 3(1) holds in this case because by Lemma 3(1) with $\Gamma_{n-2} \in \mathcal{A}$ in the previous case,

$$
\begin{aligned}
w_{n} w_{n-1}-w_{n-1} w_{n} & =w_{n-1}^{b_{n}} w_{n-2} w_{n-1} w_{n-1}^{a_{n}-b_{n}}-w_{n-1}^{b_{n}} w_{n-1} w_{n-2} w_{n-1}^{a_{n}-b_{n}} \\
& =\underbrace{0 \ldots 0}_{b_{n} q_{n-1}} \underbrace{00 \ldots \ldots .00}_{q_{n-2}+\beta_{n-1}-2}(-1)^{n-1}(-1)^{n}=\underbrace{0 \ldots 0}_{q_{n-1}} \Delta_{n} .
\end{aligned}
$$

If $a_{n}<b_{n}$, by using Lemma 3(3) with $\Gamma_{n-3} \in \mathcal{B}_{k}$ and $\beta_{n-1}=$ $\left(b_{n-1}-1\right) q_{n-2}+\left(b_{n-2}+1\right) q_{n-3}+q_{n-4}+\beta_{n-2 k-3}$ we obtain

$$
\begin{aligned}
& P_{n}^{*}=v w_{n-1}^{a_{n}} w_{n-2}\left(w_{n-2}^{b_{n-1}-1} w_{n-3} w_{n-2}-w_{n-2}^{b_{n-1}-1} w_{n-2} w_{n-3}\right) \\
& =v w_{n-1}^{a_{n}} \underline{w}_{n-2} \underbrace{00 \ldots . \ldots . \ldots 00}_{\left(b_{n-1}-1\right) q_{n-2}} \underbrace{00 \ldots . \ldots . \ldots 00}_{\left(b_{n-2}+1\right) q_{n-3}+q_{n-4}} \Delta_{n-2 k-3} \\
& =v w_{n-1}^{a_{n}} \underline{w_{n-2}} \Delta_{n-1} .
\end{aligned}
$$

The conclusion of Lemma 3(2) holds in this case because by Lemma 3(1) with $\Gamma_{n-2} \in \mathcal{A}$,

$$
\begin{aligned}
-w_{n} w_{n-1}+w_{n-1} w_{n} & =-w_{n-1}^{a_{n}} w_{n-2} w_{n-1}+w_{n-1}^{a_{n}} w_{n-1} w_{n-2} \\
& =\underbrace{0 \ldots 0}_{a_{n} q_{n-1}} \underbrace{0 \ldots 0}_{q_{n-2}} \Delta_{n-1}=\underbrace{0 \ldots 0}_{q_{n}} \Delta_{n-1}
\end{aligned}
$$

- $\left[A_{k, l-2} A_{k, l-1} A_{k, l}\right]$. This follows $\left[A_{k, l-3} A_{k, l-2} A_{k, l-1}\right]$ in the sequence S.

If $a_{n}<b_{n}$, we use Lemma 3(1) with $\Gamma_{n-3} \in \mathcal{A}$ and $\beta_{n-1}=$ $\left(b_{n-1}-1\right) q_{n-2}+\beta_{n-2}+q_{n-3}$. The rest of the proof is much the same as in the case $\left[B_{k} A_{k, 0} A_{k, 1}\right]$.

References

[1] P. Bundschuh, Über eine Klasse reeller Transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119.
[2] A. S. Fraenkel, M. Mushkin and U. Tassa, Determination of $[n \theta]$ by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446.
[3] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences $[n x+y]-[(n-1) x+y]$, Japan. J. Math. 16 (1990), 287-306.
[4] T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Austral. Math. Soc. 51 (1995), 337-351.
[5] -, The fractional part of $n \theta+\phi$ and Beatty sequences, J. Théorie des Nombres de Bordeaux 7 (1995), 387-406.
[6] -, A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory, to appear.
[7] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables, III, Bull. Austral. Math. Soc. 16 (1977), 15-47.
[8] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.
[9] K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of a certain power series, J. Number Theory 42 (1992), 61-87.
[10] B. A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970.

School of Mathematics, Physics, Computing and Electronics
Macquarie University
Sydney, New South Wales 2109
Australia
E-mail: komatsu@mpce.mq.edu.au

[^0]: 1991 Mathematics Subject Classification: Primary 11B83.
 The author thanks Dr. Peter A. B. Pleasants for his useful advice.

