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1. Introduction. Let
(1.1) p(X) =apXF +ap 1 X1+ 4ag

be a polynomial of degree k > 0 with rational coefficients. We call a poly-
nomial

(1.2) T(X)=X"+aX" +b

with complex coefficients a,b and with m > n > 0 a trinomial. In 1965
Posner and Rumsey [2] made the following conjecture:

Suppose that p(X) divides infinitely many trinomials. Then there exist a
non-zero polynomial Q(X) of degree < 2 and a natural number r such that

p(X) divides Q(XT).

In a recent paper [1], this conjecture was shown to be true by Gyéry and
Schinzel. They proved that it suffices to assume that p divides at least

(1.3) (4sd)= 2" +8sl

trinomials with rational coefficients. Here d is the degree of the splitting
field L of p over Q. s is the cardinality of the set of places of L consisting
of all infinite places and all places induced by the prime ideal factors of the
non-zero roots of p. Moreover, [ is the number of distinct roots of p.

It is the purpose of this paper to improve on this result. In fact, we will
give an estimate that avoids the parameter s completely and involves only
the degree k of the polynomial p. We have

THEOREM. Let p(X) be a polynomial of degree k > 0 with rational coef-
ficients which divides more than

(1 4) 244000 klOOO

trinomials T(X) as in (1.2) with complex coefficients. Then there exist a
non-zero polynomial Q(X) of degree < 2 with rational coefficients and a
natural number r such that p(X) divides Q(X").

[267]
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We remark that L. Hajdu also improved (1.3) and extended it to the
number field case, but his bound depends on s too.

Our proof depends upon a recent result of Schlickewei and Schmidt [3]
on polynomial-exponential equations. We conjecture that the bound (1.4)
may be replaced by an absolute bound which does not involve the degree of
p at all. However, at present this seems to be out of reach.

In a subsequent paper we will deal with the generalization when the
trinomials are replaced by k-nomials, i.e. the problem stated at the end of
the Introduction in [1]. In that wider setting, we will treat also quantitative
versions of Theorems 2A and 2B of [1].

2. A reduction. The following simple lemma will be useful.

LEMMA 2.1. Suppose that the trinomial T'(X) = X™ + aX"™ + b has a
zero o of multiplicity > 3. Then o = 0 (and consequently b = 0).

Proof. We have
T'(X)=mX™ ' +naX" ! = X" Y (mX™ "™ 4 na).

Thus if « # 0 is a zero of multiplicity > 3 of T, « is a zero of multiplicity
>2of T* =mX™ " +na. But T* = m(m —n)X™ "1 So such an a # 0
does not exist.

Let a4, ..., a; be the distinct zeros of p. We partition the set {oq, e oq}
into disjoint classes as follows: two zeros «; and «; belong to the same class
if there exists a root of unity ¢ such that a; = Cay;.

It is clear that if p(0) = 0 then {0} makes up one class.

PROPOSITION 2.2. Let the hypotheses be the same as in the Theorem.
Suppose moreover that p(0) # 0. Then, if p has a double zero «, the set of
zeros of p lies in a single class. If p does not have a double zero, then its set
of zeros splits into at most two distinct classes.

We proceed to deduce the Theorem from Proposition 2.2. First suppose
that p(0) = 0. Then any trinomial T'(X') which is divisible by p(X) will be
of the shape

TX)=X"4+aX"=X"(X"""4a).
We may conclude that any zero o # 0 of p is simple and satisfies the equation
(2.1) am "+ a=0.

Let L be the splitting field of p over Q and write G for its Galois group. As p
has rational coefficients, any ¢ € G permutes the non-zero roots of p. Thus
(2.1) implies that o(a) = a for any 0 € G. We may conclude that a € Q.
Write r = lem(n,m —n) and ¢t = r/(m —n). We put Q(X) = X(X +
a'). Then obviously p(X)|Q(X") and Q(X) € Q[X], as asserted in the
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Theorem. Thus we may suppose that p(0) # 0. If p has a double zero, then
by Proposition 2.2 there exist an a € C and a natural number r such that

(2.2) af =a fori=1,...,1.

With the same argument as above we get a € Q. In view of Lemma 2.1
we may conclude that with r from (2.2) and with Q(X) = (X — a)? the
assertion of the Theorem is true.

Next suppose that p has only simple zeros. By Proposition 2.2 we may
find complex numbers a and b and a natural number r such that any root
of p(X) satisfies one of the equations

(2.3) " =a or z" =0

Again consider the Galois group G of the splitting field L of p over Q. If all
the roots of p satisfy a single one of the equations in (2.3), say the first one,
we may argue as above and infer that with r from (2.3) and Q(X) =X —a
the assertion of the Theorem is true. Otherwise, again since G permutes the
roots of p, in view of (2.3) we obtain two alternatives: either o(a) = a and
o(b) = b for each o € G, or we may conclude that a and b are permuted
under G.

In the first case a and b are rational numbers. We may take r from (2.3)
and Q(X) = (X —a)(X —b) to get the Theorem. In the second case a and b
are conjugates over QQ and have degree 2. Therefore Q(X) = (X —a)(X —0b) €
Q[X] and the Theorem follows with r from (2.3).

The remainder of the paper deals with a proof of Proposition 2.2.

3. Polynomial-exponential equations. We consider equations of the
type

q
(3.1) Y P(x)af =0

1=1
in variables x = (z1,...,2y) € Z", where the P, are polynomials with
coefficients in a number field K and where

X _ X1 TN
ap =) ...

with given a;; € K* (1 <1 <¢q, 1 <j < N). Let P be a partition of
the set A ={1,...,q}. The sets A C A occurring in the partition P will be

considered elements of P: A € P. Given P, we may consider the system of
equations

(3.1P) Y Px)af=0 (AeP),
lex

which is a refinement of (3.1). Write &(P) for the set of solutions x of (3.1P)
which are not solutions of (3.1Q) if Q is a proper refinement of P.
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Given P, set [ L m if 1 and m lie in the same subset A of P. Let G(P)
be the subgroup of Z consisting of z satisfying

z __ .z
ap = oy,

N+
Ay =
o= ("3")
leA
where 9; is the total degree of the polynomial P;. Set

A =max{N, Ap}.
The following proposition will be crucial in the proof of our Theorem.
PROPOSITION 3.1. Suppose G(P) = {0}. Then
(3.2) 1&(P)| < 2604° 4647,
This is Theorem 1 of Schlickewei and Schmidt [3].

for any [, m with [ L m.

Write

4. Application to our problem. We are considering trinomials
T(X)=X"+aX" +b.

The hypothesis in Proposition 2.2 says b # 0. If a = 0, then the assertion of
Proposition 2.2 is trivial. Thus in the sequel we may suppose that ab # 0.
Also, given two trinomials

Ti(X)=X"™ +a X" +b, To(X)=X"+axX" +by,

we may suppose without loss of generality that (mq,n1) # (ma,ng), as
otherwise p(X) divides (a; — a2)X™ + by — be. And thus the assertion of
Proposition 2.2 would follow at once.

Let a be a zero of p(X). Define

P(X) = apa®*X* 4 ap_ 101X 4 b ajaX + ag.
Then p(X/a) = p(X). Thus, if aq, ..., ax are the zeros of p, then oy /a, ...
..., ap/a are the zeros of p. Clearly, in general p does not have rational co-
efficients. However, given a trinomial 7" and defining T in analogy with p, we
see that if p divides T then p divides T. We remark that our transformation
preserves the classes of zeros introduced in Section 2. So it will suffice to
prove Proposition 2.2 for p, which has the advantage that p(1) = 0.

Let a and @ be any other zeros of p. If p divides a trinomial T=X"+
AX™+ B, we get
1+A+B=0,
a™+ Aa"+ B =0,
8™+ AB™ + B = 0.
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We may conclude that

1 1 1
(41) a™ a™ 1 :an+ﬂm+am6n_anﬂm_am_6n:0'
gmopro1

The hypothesis of our Theorem together with the reduction from the begin-
ning of this section imply that (4.1) has at least

(42) 244000 klOOO

solutions (m,n) € Z2. On the other hand, equation (4.1) is a special instance
of the type of equations discussed in Section 3, in fact with six summands,
i.e. in the notation of Section 3 with ¢ = 6. The elements «, 8 may be written
as ag /oy, ag/aq, where aq, ag, as are the three zeros of p. As p has degree
k, o and 3 generate a number field K of degree < k3.

In our case we have N =2 and §; = ... = §g = 0. Thus we get A = 6.
Therefore, by Proposition 3.1 for any partition P of {1,...,6} with G(P) =
{(0,0)} the equation (4.1P) has not more than 260%6”(k3)6X6* solutions
(m,n) € Z?. Since the total number of partitions of {1,...,6} does not
exceed 6%, we may conclude that the total set of partitions P with G(P) =
{(0,0)} produces less than

(4'3) 218+60><63k3><63 < 913000650

solutions (m,n) € Z2.

Comparing (4.2) and (4.3) we may infer that there exists a partition P
of the set {1,...,6} with G(P) # {(0,0)}. We are going to prove that this
implies that at least one of «, 3, o/ is a root of unity. It will follow that
the three roots 1, a, 8 of p are contained in at most two different classes and
this will imply the assertion of Proposition 2.1 if p has only simple zeros.

By a slight abuse of notation we will write {a”, 5Y, ¥ 3%, a* Y, a¥, 3}
instead of {1,...,6}. We proceed to study the possible partitions:

(a) {a”, 8"}, {a¥B",a"pY,a”, 5"}.
Then G(P) among others has the defining relations
QlfT = al, V=
whence 5% = 1 and a¥ = 1. Thus either x = y = 0, i.e. G(P) = {(0,0)}, or
one of o, 3 is a root of unity.
(b) {o®, 8}, {a¥B%, 0”8}, {a¥, 5%}
We get

aV~% = By—x’ o = ﬂy‘
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Thus either y—x = 0 or /(3 is a root of unity. If y = 2 then either x = y = 0
or again «/f3 is a root of unity.

(c) {o®, 8}, {a¥B%, 0%}, {a®BY,57}
We get
aVfT = a¥, ot = .
Thus either = 0 or 3 is a root of unity. If x = 0, then either y = 0 or again

[ has to be a root of unity. We may conclude that either G(P) = {(0,0)}
or one of «, B,/ is a root of unity.

(d) {a”, 8}, {a¥p", 8%}, {a"BY,a"}.
This is symmetric to (c).
(e) {a®,a¥B%}, {8, a"BY, 0¥, 5"}
We get

Br=ar, @ =g
and conclude x = y = 0 or one of #, /[ is a root of unity.
() {a®,a¥p%}, {BY, 0”8}, {a¥, 57}
We get

a® = Olyﬁ$, ﬁy — azﬁy
which implies x = 0 or « is a root of unity. If x = 0 then either y = 0 or
again « is a root of unity.

All the partitions containing a subset with two elements are symmetric
to the cases treated above or may be treated in a similarly easy way. So we
now study partitions with subsets of three elements:

(g) {O‘mvﬁyvay/@m}a {aocﬁy’ay’ﬁx}_

We get o® = Y, a¥ = $%. Hence o®*Y = 3*T¥%. Thus either x +y = 0 or
a/f is a root of unity. If x +y = 0, we use Y = a¥f* and o*Y = V.
Together with the previous relations we obtain Y = o?¥, 32Y = o¥, whence
(3% = a3Y. Thus either y = 0 (and therefore also x = 0), or a/f3 is a root of
unity.

(h) {axjﬂy’azﬂy}’ {ayﬂr7ay7/8w}'

Then o = BY, o = a®BY. Thus either y = 0 or § is a root of unity. If
y = 0 then either x = 0 or « is a root of unity.

(i) {a",a¥B%, "}, {BY,a", 5"}

We get Y = oY, BY = 3*. Either y = 0 or /[ is a root of unity. If y =0
then either x = 0 or § is a root of unity.

All other cases are symmetric to the ones treated above or at least
equally easy. Altogether we have shown that if there exists a partition P
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with G(P) # {(0,0)} then at least one of «, 3,/ is a root of unity. So
Proposition 2.2 follows if p has only simple roots.

We next assume that p has a double root a. We may choose our transfor-
mation p — p such that 1 is a double root of p. Let 3 be any other root of p.
Then given a trinomial T' = X"+ AX"+Bweget T'(1) =T'(1) = T(8) = 0.
Thus

1 1 1
(4.4) m n 0|=Mm—-—m)+ms"—ns"=0.
gmopro1

This is an equation of the type considered in Section 3. Here N = 2, §; =
0o =03 =1, A =9, and as [ is the quotient of two roots oy, a; of p, it
has degree < k2. With our reductions we see that we are only interested
in solutions (m,n) € Z? such that no subsum in (4.4) vanishes. Thus for
P = {1,2,3} Proposition 3.1 says that (4.4) has less than

260><93 (k2)6><92 < 9440001000

solutions (m,n) € Z?, provided that G(P) = {(0,0)}. On the other hand,
the hypothesis of the Theorem guarantees that we have at least 2440001000
solutions (m,n) € Z2?. We may infer that G(P) # {(0,0)}. In our case the
defining relations for G(P) are

BT = = 1.
As G(P) # {(0,0)}, this implies at once that (3 is a root of unity. Therefore

the two zeros 1 and ( of p lie in the same class. This proves Proposition 2.2
if p has a double root.
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