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1. Introduction. Let d > 1 be a squarefree integer and K = Q(v/d) the
corresponding real quadratic field. We write e = a + bV/d for a fundamental
unit in the ring of integers of K. and € for its conjugate. The Lucas sequence
associated with K is the integer sequence

X ={Trryo(e") o = {€" + " 1nl0-
For odd n the sign of z, depends on the choice of the sign of a. This is
irrelevant for the divisibility properties we will be concerned with, but for

uniqueness sake we take z; = 2a > 0.
The Lucas sequence X satisfies the second order linear recurrence

Tpy2 = 2aTn41 — Nijg(e)Tn

for n > 0. If we take for K the field Q(v/5) generated by the golden ratio,
we obtain the very classical example of the Lucas sequence defined by the
“Fibonacci recursion” z,49 = Zp41 + T, with initial values oy = 2 and
xr1 = 1.

In this note, we show that the set of prime numbers p that divide some
term of the sequence Xy has a natural density dx and determine it for
each K. More precisely, we compute the density 5;2 of the primes that split
completely in K and divide some term of Xg and the density d, of the
primes that are inert in K and divide some term of Xx. The arguments
for both kinds of primes are somewhat different, and so are the associated
densities. It turns out that the determination of ¢, is the more difficult
part, unless we are in the “easy case” in which the norm Ng/g(e) equals
—1, when it is trivially determined. Clearly, one has dx = 6% + 6.

The method in this note extends to sequences {Trg g(a”)}22y = {a™ +
a"}oe ,, where a is any algebraic integer in a quadratic field K. Although
it is a bit cumbersome to express the density as an explicit rational number
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in terms of «, this yields a proof of what is called a “main conjecture” in [5,
p. 362]. For more details, we refer to the treatment of general second order
“torsion sequences” in [6].

THEOREM. Let K = Q(v/d) and a = & Tr /() > 0 be as above. Then
the natural densities 5}'; and 05 for the sets of prime divisors of the Lucas

sequence associated with K exist. For N g(e) = —1 the densities are as
follows.

d=2 d>?2
5}& 11/24  5/12
oo 174 1/4
b 17/24  2/3

For Nk q(e) = 1 the densities depend in the following way on whether a+ 1
and a — 1 are rational squares or not.

a—1=0 a+1=0 ax1#01

L 5/24 5/24 1/6
o 1/8 5/24 1/6
% 1/3 5/12 1/3

The main ingredient of the proof is the Chebotarev density theorem, and
the basic idea of the method goes back to Hasse [2]. Lagarias [3] was the
first to use this idea in a quadratic setting, for the classical Lucas sequence
mentioned above, which falls in the category Ng,g(e) = —1. A generaliza-
tion to other instances of units of norm —1 is given in [4]. For the easier and
well-studied case of reducible second order recurrences {r" + s"}>° ; with
r,s € Z, or for generalizations to higher order linear recurrences, the reader
can consult [1].

2. Proof of the Theorem. Let K = Q(v/d) and € = a 4+ bvV/d be as
before, and write O for the ring of integers of K. If p is a prime that is unram-
ified in K/Q, then the kernel of the norm map r, = ker[N : (O/pO)* — F; ]

is a cyclic group of order p — (%). We set

— *62 if NK/@((‘:) = *1,
(2.1) ¢=ax =¢/E= {52 if Nijgle) = 1.
Let p12d be a prime number. Looking at the explicit form of the nth term
T, = " +&" of Xk, we find that p divides z,, if and only if we have
¢" = —1 € (O/pO)*. As q lies in the cyclic subgroup x, C (O/pO)*

and —1 is the unique element of order 2 in that group, we find the basic
characterization

p divides some term of X < the order of ¢ € (O/pO)* is even.
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The key idea in determining the densities J and d5 is that one can
describe the parity of the order of ¢ € (O/pO)* in terms of the splitting
behavior of p in some infinite algebraic extension of Q. We start with the
easier case of the rational primes that split completely in K.

Split case. Let ST be the set of odd primes p that split completely in
K, and Dt C ST the set of primes in ST that divide some term of Xg.

For k € Zs1, we let S;7 C ST be the set of primes p € ST for which
p — 1 has exactly k = orda(p — 1) factors 2. The set S; consists of the
primes that split completely in the field K ((5x) obtained by adjoining to
K a primitive 2¥th root of unity, but not in the field K ((yx+1) obtained by
adjoining to K a primitive 2¥*1th root of unity. By the Chebotarev density
theorem, the set S,:' has a natural density inside the set of all primes. It
equals §(S;") = [K(Cor) : Q7 = [K(Corr1) : Q7. Clearly, the sum of these
densities for all k > 1is [K : Q7' =1/2 =4§(ST).

For p € S,':, the group (O/pO)* is a product of two cyclic groups of order
p — 1, and an element has odd order in (O/pQ)* if and only if it is a 2¥th
power in (O/p0)*. As q € (O/pO)* is a 2Fth power if and only if p splits
completely in the field K ((yx, 2,/q), we conclude that a prime p € S does
not divide a term of Xk if and only if it splits completely in K ({o«, 2/q), but
not in K (Car+1, 2/q). By the Chebotarev density theorem, the subset of such
primes in S} has natural density [K ((or, 25/q) : Q7! —[K (Cart1, 2/q) - Q) 1.
The complement D = D+ N S} of this set in S;" has a density as well,
and we find that both D¥ = (J, 5, D;\ and its complement S*\ D* =
Uis1 (S \D;f) in ST are countable disjoint unions of sets of primes having
a natural density. It follows that D+ has lower density >, d(D;), and
that S* \ D¥ has lower density 37, -, 5(S; \ D{f). These lower densities
add up to §(ST), so they are in fact densities. We conclude that DT has a
natural density d which satisfies

17 +_ 1 B 1
S A ,§1<[K(<2k,%):@1 K 9 a)

Equation (2.2) reduces the computation of (5}';, to a computation of field
degrees in the infinite extension K ({3, 2%/q) of Q. To ease notation, we
write

Fy, = K(C2k+‘ ) 2\,76)
Then the kth term of the right hand side of (2.2) equals [Fy : Q7' if (ori1
generates a quadratic extension of K ((or, 2/q), and 0 otherwise.

Suppose first that we have Ng,g(¢) = —1, and consequently ¢ = —¢
in (2.1). Then ¢ is a square in K((4), and also in the field M = K({2)
obtained by adjoining all 2-power roots of unity to K. It is not a fourth
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power in M, since M is abelian over Q and M ({/q) = M (+/¢) has a quartic
subfield K (1/¢) that is not normal over Q. By Kummer theory, it follows that
2/q generates a cyclic extension of degree 25~1 of K ((x) for every k > 2.
Our normality argument shows that this extension is linearly disjoint over
K(CQk) from K(<2k+1 )

For k = 1, we have a quadratic extension K(,/q) = K((4), which coin-
cides with the extension generated by (sx+1 = (4. This shows that in the
case of norm —1, the term for k£ =1 in (2.2) vanishes.

If K is not the real quadratic subfield Q(v/2) of Q((ae), then (ois:
generates a quadratic extension of K((yx) for all & > 2, and Fj has degree
2.2k . 2k=1 = 4k for these k. We find 1/2 — 6 = D ok>2 4% = 1/12 and
6 =5/12.

For K = Q(v/2) the degree of Fj, is only 2% - 2F—1 = 22k—1 for k > 3.
Moreover, the term for k = 2 in (2.2) vanishes since K((4) = Q((s) now
contains (ort1 = (g. We find 1/2 — 65 = 37, 5,217%% = 1/24 and 6} =
11/24. -

The diagrams below indicate the field degrees in the two situations for
k>2andk > 3, respectively.

N /’\

K(Goern) Ko %) K(G) K(Gar, %/3)
K(¢or) K(Cor)
s s
K() = K(a) K(Gs) = K ()
: :
K QW) K = Q?)

Suppose next that we have Ng,g(¢) = 1, and so in particular K #

Q(v/2). The analysis is similar to the previous case, but we now have ¢ = 2,
so ¢ is a square in K. As the field K (y/¢) is non-normal of degree 8, we see
that ¢ = €2 is a square in M = K ({3~ ), but not an eighth power. We have
two cases.

Suppose ¢ is not a fourth power in M. Then 20/g generates a cyclic
extension of degree 28~ of K ((y) for every k > 1, and this extension is
linearly disjoint from the extension of K((y+) generated by (or+1. This is
similar to the case K # Q(v/2) above, the only difference being that we
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now also have a non-zero term for k = 1 in (2.2). We find 1/2 — §% =
Ses147F=1/3 and 65 = 1/6.

Suppose that ¢ is a fourth power in M. Then K(4/¢) is a subfield of M.
Besides K, the quadratic subfields of K (1/¢) are the two fields Q(y/e+1//¢),
and one of those two is contained in Q((2~ ). From Ng,g(e) = 1 we deduce

(2.3) (VE £ 1/VE)?2 = Trpgle) £2 = 2a £ 1),

so this “exceptional case” occurs exactly when one of the elements a + 1
is a rational square. The fields K ((4,y/q) = K((4,+/€) and K((g) coincide
here, and 2{/q generates, for all k > 3, a cyclic extension of degree 2k=2 of
K ((or) that is linearly disjoint over K ((ox) from K((or+1). As in the case
K = Q(v/2) above, the degree of Fy, is only 2F-25=1 = 22=1 for ;> 3. The
term for k£ = 2 vanishes, but for £ = 1 we do have a contribution 1/4. We
find 1/2 — 6 =1/4+3,552" 2% =7/24 and 0;; = 5/24 if either a + 1 or

a — 1 is a square. This shows that the values of (5}';, are as asserted.

Inert case. Let p be a prime that is inert in K/Q. Then O/pQO is a field
of p? elements, and the norm map N : O/pO — F, raises all elements to
the power p + 1.

Suppose first that we are in the case Ng/g(¢) = —1. Then we have
q = —¢? in (2.1) and e?™! = —1 € (O/pO)*. For p = 1 mod 4 we obtain
gPtV/2 = e+l — 1 ¢ (O/pO)*, which shows that the order of ¢ in
(O/pO)* is odd. For p = 3 mod 4 we obtain ¢P+1)/2 = gp+1 — _1 ¢
(O/pO)*, which shows that the order of ¢ in (O/pO)* is even. We find that
0, is the density of the primes p = 3 mod 4 that are inert in K/Q, hence
0 =1/4.

From now on we suppose Ng/g(¢) = 1. In particular, this implies K #
Q(v2). We have ¢ = €2, and consequently ¢P+1)/2 = ¢+ — 1 ¢ (O/p0O)*
for all inert odd primes p. This shows that for all inert primes p = 1 mod 4,
the order of ¢ is again odd and p does not divide a term of Xg. For the
inert primes p = 3 mod 4 we use an approach that is similar to that in the
split case.

Let S~ be the set of odd primes p that are inert in K/Q, and D~ C S~
the set of primes in S~ that divide some term of Xg. For £k € Zs>,, we
let S, C S~ be the set of primes p € S~ for which p + 1 has exactly
k = ords(p + 1) factors 2. This is a set with a natural density, and we want
to compute the density of the subset D, = D™ NS, by characterizing the
primes p € D, in terms of splitting conditions on p in some finite Galois
extension Fy/Q.

A prime p is in S, if and only if its Frobenius substitution in the abelian
group Gal(K (¢or+1)/Q) is the unique element ¢ that is non-trivial on K and
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k

acts on the 2¥T1th roots of unity as p((okt1) = C;,ﬁQ . As K({or+1) has
degree 2¥*1 over Q, this shows that S, has natural density 27%=1 for all
k. We let By C K ((yx+1) be the subfield corresponding to the subgroup (¢)
of Gal(K ((ox+1)/Q). Note that K ((yr+1) = Bi(e) is a quadratic extension
of Bk

If pisin S, , the order p>—1 = (p—1)(p+1) of the cyclic group (O/p0)*
has exactly k£ +1 > 3 factors 2, and ¢ = €2 € (O/pO)* has odd order if and
only if €2 is a 2¥+1th power in (O/pO)*. As —1 is a 2Fth power in (O/pO)*,
we conclude that p € S, does not divide any term of Xy if and only if e
is a 2¥th power in (O/pO)*. This leads to a characterization of the primes
p € S, outside D™ in terms of their splitting behavior in the field

Fy = K(Corrr, VE) = Bi(*VE);

they are the primes p that split completely in By and have extensions in By,
that are inert in By (¢)/By and split completely in Fy /By (¢). This means
that the Frobenius symbol of p in the non-abelian group Gal(F}/Q), which is
only determined up to conjugacy, is an element of order 2 in the normal sub-
group Gal(F}/By) that does not lie in the normal subgroup Gal(Fy /By (¢)).
If ny denotes the number of such elements in Gal(F}/Q), the Chebotarev
density theorem yields an inert analogue of (2.2):

1 1 Nk
2.4 ——(5_ = — 27k7_
( ) 9 K 4+Z +Z [Fkin]
k>2 k>2

a3

[F : Q]

e

This time we have to do more than a degree computation, since we also need
to know the structure of the group Gal(F}y/By).

Suppose first that neither a —1 nor a+1 is a square. Then the extensions
K (y/¢) and K ({2~) are linearly disjoint over K, and F} is a cyclic extension
of degree 2% of By(e) = K((or+1) generated by %/e. We can extend the
generator ¢ of Gal(By(g)/By) to an element ¢* € Gal(F)/By) of order 2
by setting ¢*(%/2) = 1/%/€. As ¢* acts by inversion on both (g) and ((s+),
the Galois equivariance of the Kummer pairing

Gal(Fy/ By (Car+1)) X () = (Cax)
shows that ¢* commutes with all elements in Gal(Fy /By (g)). We find
Gal(Fy/By) = Gal(Fy/By(€)) x (¢*) = 7./287 x 7./27.

As there are exactly two elements of order 2 in Gal(Fj/Bjy) of the form
(o,¢"), this yields ny = 2 in (2.4) for all & > 2. We find 1/2 — §, =
1/4+3,5,27F2.27F=1 = 1/3 and §5 = 1/6.
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/

k(VE) By (% +1/%/¢)

2VE)

Fk

Suppose finally that we are in the exceptional case where either a + 1 or
a — 1 is a square. Then the extension F} /By in the diagram above collapses
to an extension of degree 2% for all k > 2. For k > 3, we have v/2 € B;, and
(2.3) shows that By, contains /e +1/4/e if a+ 1 is a square and /e — 1//¢
if @ — 1 is a square. In the first case we have an isomorphism

Gal(Fy/By) = Gal(By(vE)/By) x (p*) = 7./2F717 x 7./27.

and nj = 2 as before. In the other case, F} /By is a cyclic extension of
degree 2% with quadratic subextension By(¢) = B(y/€). Any extension of
¢ € Gal(Bg(g)/By) to Fy is then a generator of Gal(F)/By), and we have

For k = 2, any of the elements /2 and /e+1/,/¢ generates the quadratic
extension By(y/€) = By(v/2) of By. The extension By C By(/€) = F; is of
degree 4 and has a quadratic subextension generated by /¢ = \/(a + 1)/2+
V(a—1)/2. If a+1 is a square, then y/¢ has norm —1 in By and Fy/Bs is a
cyclic extension. If @ — 1 is a square, then /¢ has norm 1 in By, and F5/B>
is a Vy-extension. The corresponding values of ny are no = 0 and ny = 2.

For a+1 a square we find 1/2 — 6 = 1/4+0+), 5,27 F-2.27% =7/24
and 0 = 5/24. For a—1 a square we find a finite sum 1/2 -6 =1/4+1/8
and 0, = 1/8. This finishes the proof of the theorem.
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