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Prime divisors of Lu
as sequen
esbyPieter Moree (Bonn) and Peter Stevenhagen (Amsterdam)1. Introdu
tion. Let d > 1 be a squarefree integer andK = Q(pd) the
orresponding real quadrati
 �eld. We write " = a+ bpd for a fundamentalunit in the ring of integers of K, and " for its 
onjugate. The Lu
as sequen
easso
iated with K is the integer sequen
eXK = fTrK=Q("n)g1n=0 = f"n + "ng1n=0:For odd n the sign of xn depends on the 
hoi
e of the sign of a. This isirrelevant for the divisibility properties we will be 
on
erned with, but foruniqueness sake we take x1 = 2a > 0.The Lu
as sequen
e XK satis�es the se
ond order linear re
urren
exn+2 = 2axn+1 �NK=Q(")xnfor n � 0. If we take for K the �eld Q(p5) generated by the golden ratio,we obtain the very 
lassi
al example of the Lu
as sequen
e de�ned by the\Fibona

i re
ursion" xn+2 = xn+1 + xn with initial values x0 = 2 andx1 = 1.In this note, we show that the set of prime numbers p that divide someterm of the sequen
e XK has a natural density ÆK and determine it forea
h K. More pre
isely, we 
ompute the density Æ+K of the primes that split
ompletely in K and divide some term of XK and the density Æ�K of theprimes that are inert in K and divide some term of XK . The argumentsfor both kinds of primes are somewhat di�erent, and so are the asso
iateddensities. It turns out that the determination of Æ�K is the more diÆ
ultpart, unless we are in the \easy 
ase" in whi
h the norm NK=Q(") equals�1, when it is trivially determined. Clearly, one has ÆK = Æ+K + Æ�K .The method in this note extends to sequen
es fTrK=Q(�n)g1n=0 = f�n+�ng1n=0, where � is any algebrai
 integer in a quadrati
 �eld K. Althoughit is a bit 
umbersome to express the density as an expli
it rational number1991 Mathemati
s Subje
t Classi�
ation: Primary 11R45; Se
ondary 11B39.Key words and phrases: Lu
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e, Chebotarev density theorem.[403℄



404 P. Moree and P. Stevenhagenin terms of �, this yields a proof of what is 
alled a \main 
onje
ture" in [5,p. 362℄. For more details, we refer to the treatment of general se
ond order\torsion sequen
es" in [6℄.Theorem. Let K = Q(pd) and a = 12 TrK=Q(") > 0 be as above. Thenthe natural densities Æ+K and Æ�K for the sets of prime divisors of the Lu
assequen
e asso
iated with K exist. For NK=Q(") = �1 the densities are asfollows. d = 2 d > 2Æ+K 11=24 5=12Æ�K 1=4 1=4ÆK 17=24 2=3For NK=Q(") = 1 the densities depend in the following way on whether a+1and a� 1 are rational squares or not.a� 1 =� a+ 1 =� a� 1 6= �Æ+K 5=24 5=24 1=6Æ�K 1=8 5=24 1=6ÆK 1=3 5=12 1=3The main ingredient of the proof is the Chebotarev density theorem, andthe basi
 idea of the method goes ba
k to Hasse [2℄. Lagarias [3℄ was the�rst to use this idea in a quadrati
 setting, for the 
lassi
al Lu
as sequen
ementioned above, whi
h falls in the 
ategory NK=Q(") = �1. A generaliza-tion to other instan
es of units of norm �1 is given in [4℄. For the easier andwell-studied 
ase of redu
ible se
ond order re
urren
es frn + sng1n=0 withr; s 2 Z, or for generalizations to higher order linear re
urren
es, the reader
an 
onsult [1℄.2. Proof of the Theorem. Let K = Q(pd) and " = a + bpd be asbefore, and writeO for the ring of integers ofK. If p is a prime that is unram-i�ed in K=Q , then the kernel of the norm map �p = ker[N : (O=pO)� ! F�p ℄is a 
y
li
 group of order p� �dp�. We set(2:1) q = qK = "=" = ��"2 if NK=Q(") = �1,"2 if NK=Q(") = 1.Let p - 2d be a prime number. Looking at the expli
it form of the nth termxn = "n + "n of XK , we �nd that p divides xn if and only if we haveqn = �1 2 (O=pO)�. As q lies in the 
y
li
 subgroup �p � (O=pO)�and �1 is the unique element of order 2 in that group, we �nd the basi

hara
terizationp divides some term of XK , the order of q 2 (O=pO)� is even.



Prime divisors of Lu
as sequen
es 405The key idea in determining the densities Æ+K and Æ�K is that one 
andes
ribe the parity of the order of q 2 (O=pO)� in terms of the splittingbehavior of p in some in�nite algebrai
 extension of Q . We start with theeasier 
ase of the rational primes that split 
ompletely in K.Split 
ase. Let S+ be the set of odd primes p that split 
ompletely inK, and D+ � S+ the set of primes in S+ that divide some term of XK .For k 2 Z�1, we let S+k � S+ be the set of primes p 2 S+ for whi
hp � 1 has exa
tly k = ord2(p � 1) fa
tors 2. The set S+k 
onsists of theprimes that split 
ompletely in the �eld K(�2k) obtained by adjoining toK a primitive 2kth root of unity, but not in the �eld K(�2k+1) obtained byadjoining to K a primitive 2k+1th root of unity. By the Chebotarev densitytheorem, the set S+k has a natural density inside the set of all primes. Itequals Æ(S+k ) = [K(�2k) : Q ℄�1 � [K(�2k+1) : Q ℄�1 . Clearly, the sum of thesedensities for all k � 1 is [K : Q ℄�1 = 1=2 = Æ(S+).For p 2 S+k , the group (O=pO)� is a produ
t of two 
y
li
 groups of orderp � 1, and an element has odd order in (O=pO)� if and only if it is a 2kthpower in (O=pO)�. As q 2 (O=pO)� is a 2kth power if and only if p splits
ompletely in the �eld K(�2k ; 2kpq), we 
on
lude that a prime p 2 S+k doesnot divide a term ofXK if and only if it splits 
ompletely inK(�2k ; 2kpq), butnot inK(�2k+1 ; 2kpq). By the Chebotarev density theorem, the subset of su
hprimes in S+k has natural density [K(�2k ; 2kpq) : Q ℄�1�[K(�2k+1 ; 2kpq) : Q ℄�1 .The 
omplement D+k = D+ \ S+k of this set in S+k has a density as well,and we �nd that both D+ = Sk�1D+k and its 
omplement S+ n D+ =Sk�1(S+k nD+k ) in S+ are 
ountable disjoint unions of sets of primes havinga natural density. It follows that D+ has lower density Pk�1 Æ(D+k ), andthat S+ n D+ has lower density Pk�1 Æ(S+k n D+k ). These lower densitiesadd up to Æ(S+), so they are in fa
t densities. We 
on
lude that D+ has anatural density Æ+K whi
h satis�es(2:2) 12 � Æ+K =Xk�1� 1[K(�2k ; 2kpq) : Q ℄ � 1[K(�2k+1 ; 2kpq) : Q ℄�:Equation (2.2) redu
es the 
omputation of Æ+K to a 
omputation of �elddegrees in the in�nite extension K(�21 ; 21pq) of Q . To ease notation, wewrite Fk = K(�2k+1 ; 2kpq):Then the kth term of the right hand side of (2.2) equals [Fk : Q ℄�1 if �2k+1generates a quadrati
 extension of K(�2k ; 2kpq), and 0 otherwise.Suppose �rst that we have NK=Q(") = �1, and 
onsequently q = �"2in (2.1). Then q is a square in K(�4), and also in the �eld M = K(�21)obtained by adjoining all 2-power roots of unity to K. It is not a fourth
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e M is abelian over Q and M( 4pq) =M(p") has a quarti
sub�eldK(p") that is not normal over Q . By Kummer theory, it follows that2kpq generates a 
y
li
 extension of degree 2k�1 of K(�2k) for every k � 2.Our normality argument shows that this extension is linearly disjoint overK(�2k) from K(�2k+1).For k = 1, we have a quadrati
 extension K(pq) = K(�4), whi
h 
oin-
ides with the extension generated by �2k+1 = �4. This shows that in the
ase of norm �1, the term for k = 1 in (2.2) vanishes.If K is not the real quadrati
 sub�eld Q(p2) of Q(�21 ), then �2k+1generates a quadrati
 extension of K(�2k ) for all k � 2, and Fk has degree2 � 2k � 2k�1 = 4k for these k. We �nd 1=2 � Æ+K = Pk�2 4�k = 1=12 andÆ+K = 5=12.For K = Q(p2) the degree of Fk is only 2k � 2k�1 = 22k�1 for k � 3.Moreover, the term for k = 2 in (2.2) vanishes sin
e K(�4) = Q(�8) now
ontains �2k+1 = �8. We �nd 1=2 � Æ+K = Pk�3 21�2k = 1=24 and Æ+K =11=24.The diagrams below indi
ate the �eld degrees in the two situations fork � 2 and k � 3, respe
tively.FkK(�2k+1) K(�2k ; 2kpq)K(�2k )K(�4) = K(pq)K 6= Q(p2)
2GGGGGGGCCCCCCzzzzzz 2k�1xxxxxxx2k�22

FkK(�2k+1 ) K(�2k ; 2kpq)K(�2k )K(�8) = K(pq)K = Q(p2)
2GGGGGGGCCCCCCzzzzzz 2k�1xxxxxxx2k�32Suppose next that we have NK=Q(") = 1, and so in parti
ular K 6=Q(p2). The analysis is similar to the previous 
ase, but we now have q = "2,so q is a square in K. As the �eld K( 4p") is non-normal of degree 8, we seethat q = "2 is a square in M = K(�21), but not an eighth power. We havetwo 
ases.Suppose q is not a fourth power in M . Then 2kpq generates a 
y
li
extension of degree 2k�1 of K(�2k ) for every k � 1, and this extension islinearly disjoint from the extension of K(�2k) generated by �2k+1 . This issimilar to the 
ase K 6= Q(p2) above, the only di�eren
e being that we



Prime divisors of Lu
as sequen
es 407now also have a non-zero term for k = 1 in (2.2). We �nd 1=2 � Æ+K =Pk�1 4�k = 1=3 and Æ+K = 1=6.Suppose that q is a fourth power in M . Then K(p") is a sub�eld of M .BesidesK, the quadrati
 sub�elds ofK(p") are the two �elds Q(p"�1=p"),and one of those two is 
ontained in Q(�21 ). From NK=Q(") = 1 we dedu
e(2:3) (p"� 1=p")2 = TrK=Q(")� 2 = 2(a� 1);so this \ex
eptional 
ase" o

urs exa
tly when one of the elements a � 1is a rational square. The �elds K(�4; 4pq) = K(�4;p") and K(�8) 
oin
idehere, and 2kpq generates, for all k � 3, a 
y
li
 extension of degree 2k�2 ofK(�2k) that is linearly disjoint over K(�2k ) from K(�2k+1). As in the 
aseK = Q(p2) above, the degree of Fk is only 2k �2k�1 = 22k�1 for k � 3. Theterm for k = 2 vanishes, but for k = 1 we do have a 
ontribution 1=4. We�nd 1=2� Æ+K = 1=4 +Pk�3 21�2k = 7=24 and Æ+K = 5=24 if either a+ 1 ora� 1 is a square. This shows that the values of Æ+K are as asserted.Inert 
ase. Let p be a prime that is inert in K=Q . Then O=pO is a �eldof p2 elements, and the norm map N : O=pO ! Fp raises all elements tothe power p+ 1.Suppose �rst that we are in the 
ase NK=Q(") = �1. Then we haveq = �"2 in (2.1) and "p+1 = �1 2 (O=pO)�. For p � 1 mod 4 we obtainq(p+1)=2 = �"p+1 = 1 2 (O=pO)�, whi
h shows that the order of q in(O=pO)� is odd. For p � 3 mod 4 we obtain q(p+1)=2 = "p+1 = �1 2(O=pO)�, whi
h shows that the order of q in (O=pO)� is even. We �nd thatÆ�K is the density of the primes p � 3 mod 4 that are inert in K=Q , hen
eÆ�K = 1=4.From now on we suppose NK=Q(") = 1. In parti
ular, this implies K 6=Q(p2). We have q = "2, and 
onsequently q(p+1)=2 = "p+1 = 1 2 (O=pO)�for all inert odd primes p. This shows that for all inert primes p � 1 mod 4,the order of q is again odd and p does not divide a term of XK . For theinert primes p � 3 mod 4 we use an approa
h that is similar to that in thesplit 
ase.Let S� be the set of odd primes p that are inert in K=Q , and D� � S�the set of primes in S� that divide some term of XK . For k 2 Z�2, welet S�k � S� be the set of primes p 2 S� for whi
h p + 1 has exa
tlyk = ord2(p+ 1) fa
tors 2. This is a set with a natural density, and we wantto 
ompute the density of the subset D�k = D� \ S�k by 
hara
terizing theprimes p 2 D�k in terms of splitting 
onditions on p in some �nite Galoisextension Fk=Q .A prime p is in S�k if and only if its Frobenius substitution in the abeliangroup Gal(K(�2k+1)=Q) is the unique element ' that is non-trivial on K and
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ts on the 2k+1th roots of unity as '(�2k+1) = ��1+2k2k+1 . As K(�2k+1) hasdegree 2k+1 over Q , this shows that S�k has natural density 2�k�1 for allk. We let Bk � K(�2k+1) be the sub�eld 
orresponding to the subgroup h'iof Gal(K(�2k+1)=Q). Note that K(�2k+1) = Bk(") is a quadrati
 extensionof Bk.If p is in S�k , the order p2�1 = (p�1)(p+1) of the 
y
li
 group (O=pO)�has exa
tly k+1 � 3 fa
tors 2, and q = "2 2 (O=pO)� has odd order if andonly if "2 is a 2k+1th power in (O=pO)�. As �1 is a 2kth power in (O=pO)�,we 
on
lude that p 2 S�k does not divide any term of XK if and only if "is a 2kth power in (O=pO)�. This leads to a 
hara
terization of the primesp 2 S�k outside D� in terms of their splitting behavior in the �eldFk = K(�2k+1 ; 2kp") = Bk( 2kp");they are the primes p that split 
ompletely in Bk and have extensions in Bkthat are inert in Bk(")=Bk and split 
ompletely in Fk=Bk("). This meansthat the Frobenius symbol of p in the non-abelian group Gal(Fk=Q), whi
h isonly determined up to 
onjuga
y, is an element of order 2 in the normal sub-group Gal(Fk=Bk) that does not lie in the normal subgroup Gal(Fk=Bk(")).If nk denotes the number of su
h elements in Gal(Fk=Q), the Chebotarevdensity theorem yields an inert analogue of (2.2):(2:4) 12 � Æ�K = 14 +Xk�2 nk[Fk : Q ℄ = 14 +Xk�2 2�k nk[Fk : Bk℄ :This time we have to do more than a degree 
omputation, sin
e we also needto know the stru
ture of the group Gal(Fk=Bk).Suppose �rst that neither a�1 nor a+1 is a square. Then the extensionsK(p") and K(�21) are linearly disjoint over K, and Fk is a 
y
li
 extensionof degree 2k of Bk(") = K(�2k+1) generated by 2kp". We 
an extend thegenerator ' of Gal(Bk(")=Bk) to an element '� 2 Gal(Fk=Bk) of order 2by setting '�( 2kp") = 1= 2kp". As '� a
ts by inversion on both h"i and h�2ki,the Galois equivarian
e of the Kummer pairingGal(Fk=Bk(�2k+1))� h"i ! h�2kishows that '� 
ommutes with all elements in Gal(Fk=Bk(")). We �ndGal(Fk=Bk) �= Gal(Fk=Bk(")) � h'�i �= Z=2kZ� Z=2Z:As there are exa
tly two elements of order 2 in Gal(Fk=Bk) of the form(�; '�), this yields nk = 2 in (2.4) for all k � 2. We �nd 1=2 � Æ�K =1=4 +Pk�2 2�k � 2 � 2�k�1 = 1=3 and Æ�K = 1=6.



Prime divisors of Lu
as sequen
es 409Bk( 2kp") = FkBk(p") Bk( 2kp"+ 1= 2kp")K(�2k+1 ) = Bk(") Bk(p"� 1p" ) Bk(p"+ 1p" )Bk
uuuuuuuu h'�iKKKKKKKK~~~~~~ 2HHHHHHH 2k�1ssssssssh'iAAAAAA 2uuuuuuuuSuppose �nally that we are in the ex
eptional 
ase where either a+1 ora� 1 is a square. Then the extension Fk=Bk in the diagram above 
ollapsesto an extension of degree 2k for all k � 2. For k � 3, we have p2 2 Bk and(2.3) shows that Bk 
ontains p"+1=p" if a+1 is a square and p"� 1=p"if a� 1 is a square. In the �rst 
ase we have an isomorphismGal(Fk=Bk) �= Gal(Bk(p")=Bk)� h'�i �= Z=2k�1Z� Z=2Zand nk = 2 as before. In the other 
ase, Fk=Bk is a 
y
li
 extension ofdegree 2k with quadrati
 subextension Bk(") = Bk(p"). Any extension of' 2 Gal(Bk(")=Bk) to Fk is then a generator of Gal(Fk=Bk), and we havenk = 0.For k = 2, any of the elementsp2 andp"�1=p" generates the quadrati
extension B2(p") = B2(p2) of B2. The extension B2 � B2( 4p") = F2 is ofdegree 4 and has a quadrati
 subextension generated by p" =p(a+ 1)=2+p(a� 1)=2. If a+1 is a square, then p" has norm �1 in Bk and F2=B2 is a
y
li
 extension. If a� 1 is a square, then p" has norm 1 in Bk and F2=B2is a V4-extension. The 
orresponding values of n2 are n2 = 0 and n2 = 2.For a+1 a square we �nd 1=2�Æ�K = 1=4+0+Pk�3 2�k �2 �2�k = 7=24and Æ�K = 5=24. For a�1 a square we �nd a �nite sum 1=2�Æ�K = 1=4+1=8and Æ�K = 1=8. This �nishes the proof of the theorem.Referen
es[1℄ C. Bal lot, Density of prime divisors of linear re
urren
es, Mem. Amer. Math. So
.551 (1995).[2℄ H. Hasse, �Uber die Di
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as numbers has density 2=3,Pa
i�
 J. Math. 118 (1985), 449{461; Errata: ibid. 162 (1994), 393{397.[4℄ P. Moree, On the prime density of Lu
as sequen
es, J. Th�eor. Nombres Bordeaux8 (1996), 449{459.
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