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Distin
t zeros of L-fun
tionsbyE. Bombieri (Prin
eton, N.J.) and A. Perelli (Genova)1. Introdu
tion. Let L1(s) and L2(s) be two \independent" L-fun
-tions, where the meaning of \independent" will be 
lari�ed later on. Sin
ethe L-fun
tions are determined by their zeros, we may expe
t that L1(s) andL2(s) have few 
ommon zeros. This problem appears to be very diÆ
ult atpresent, therefore we may ask the easier question of getting a fair quantity ofdistin
t zeros of su
h fun
tions. In this paper we show that, under suitable
onditions, L1(s) and L2(s) have a positive proportion of distin
t zeros.We state our results in the moderately general setting of Bombieri{Hejhal's paper [1℄, whi
h also provides the basi
 ingredients of the presentpaper. Moreover, we will work out our main tool, Theorem 2 below, in the
ase of several L-fun
tions. Hen
e, for a given integer N � 2, we 
onsiderN fun
tions L1(s); : : : ; LN (s) satisfying the following basi
 hypothesis.Hypothesis B. (I) Ea
h fun
tion Lj(s) has an Euler produ
t of the formLj(s) =Yp dYi=1(1� �ipp�s)�1with j�ipj � p� for some �xed 0 � � < 1=2 and i = 1; : : : ; d.(II) For every " > 0 we haveXp�x dXi=1 j�ipj2 � x1+":(III) The fun
tions Lj(s) have an analyti
 
ontinuation to C as mero-morphi
 fun
tions of �nite order with a �nite number of poles, all on theline � = 1, and satisfy a fun
tional equation of the form�(s) = "�(1� s);where �(s) = QsQmi=1 � (�is+ �i), Q > 0, �i > 0, Re�i � 0 and j"j = 1.1991 Mathemati
s Subje
t Classi�
ation: Primary 11M41.[271℄



272 E. Bombieri and A. Perell i(IV) The 
oeÆ
ients aj(p) of the Diri
hlet seriesLj(s) = 1Xn=1 aj(n)n�ssatisfy Xp�x aj(p)ak(p)p = Æjknj log log x+ 
jk +O� 1log x�for 
ertain 
onstants nj > 0.We expli
itly remark that all the data involved in Hypothesis B 
on
ern-ing a fun
tion Lj(s) may depend on j. We also remark that the 
onditionsof Hypothesis B may be somewhat relaxed (see Selberg [10℄) in order todedu
e our results below.We refer to Se
tion 3 of [1℄ for a thorough dis
ussion of Hypothesis B, ofits standard 
onsequen
es and of several examples of fun
tions satisfying it.Here we point out only that B(II) implies that both the Diri
hlet series andthe Euler produ
t of Lj(s) 
onverge absolutely for � > 1, B(I) ensures thatLj(s) 6= 0 for � > 1 and B(III) gives rise to the familiar notions of 
riti
alstrip, 
riti
al line and trivial and non-trivial zeros. Moreover, writing�j = mXi=1 �i;Nj(t) = jf% : Lj(%) = 0; 0 � Re % � 1 and 0 � Im % � tgjand Sj(t) = 1� argLj(1=2 + it);for suÆ
iently large t we have(1) Nj(t) = �j� t log t+ 
jt+ 
0j + Sj(t) +O(1=t)with 
ertain 
onstants 
j and 
0j .Condition B(IV), introdu
ed by Selberg [10℄, plays a spe
ial role, sin
eit provides a form of \near-orthogonality" of the fun
tions Lj(s); the \in-dependen
e" alluded to at the beginning of the se
tion 
omes from this\near-orthogonality". For instan
e, B(IV) implies that L1(s); : : : ; LN (s)are linearly independent over C ; see Bombieri{Hejhal [1℄ and Ka
zorowski{Perelli [7℄ for further results in this dire
tion.We expe
t that the fun
tions Lj(s) satisfy the Generalized RiemannHypothesis. As a substitute of it in our arguments, we will instead assumethe following density estimate. LetNj(�; T ) = jf% : Lj(%) = 0; Re % � � and jIm %j � Tgj:



Distin
t zeros of L-fun
tions 273Hypothesis D. There exists 0 < a < 1 su
h thatNj(�; T )� T 1�a(��1=2) log Tuniformly for � � 1=2 and j = 1; : : : ; N .The main point in introdu
ing Hypothesis D is that, unlike the Gener-alized Riemann Hypothesis, it 
an be veri�ed in many interesting 
ases. Infa
t, it has been proved by Selberg [9℄ for the Riemann zeta fun
tion, byFujii [5℄ for Diri
hlet L-fun
tions, and by Luo [8℄ in the more diÆ
ult 
aseof L-fun
tions atta
hed to 
ertain modular forms.In order to state our main result, we de�ne the 
ounting fun
tionD(T;L1; L2) of the distin
t non-trivial zeros, 
ounted with multipli
ity, oftwo fun
tions L1(s) and L2(s) asD(T;L1; L2) = X0�Re %�10�Im %�T max(m1(%)�m2(%); 0);where % runs over the zeros of L1(s)L2(s) and is 
ounted without multipli
-ity. We also de�neD(T ) = D(T;L1; L2) +D(T;L2; L1) = X0�Re %�10�Im%�T jm1(%)�m2(%)j;with the same 
onvention about %.Our main result isTheorem 1. Let L1(s) and L2(s) satisfy Hypotheses B and D and sup-pose that �1 = �2. Then D(T;L1; L2)� T log T:Clearly, the same lower bound holds for D(T;L2; L1) and D(T ) too.The �rst result of this type has been obtained by Fujii [6℄ in the 
ase oftwo primitive Diri
hlet L-fun
tions, by means of Selberg's moments method.The problem of 
ounting strongly distin
t zeros, i.e., zeros pla
ed at dif-ferent points, appears to be more diÆ
ult, and the best result is due toConrey{Ghosh{Gonek [3℄, [4℄. They deal with this problem, in the 
ase oftwo primitive Diri
hlet L-fun
tions, by 
onsidering the more diÆ
ult ques-tion of getting simple zeros of L(s; �1)L(s; �2), and show that there are� T 6=11 su
h zeros up to T . Moreover, if the Riemann Hypothesis is as-sumed for one of the two fun
tions, then a positive proportion of su
h zerosis obtained. However, the te
hniques in [3℄ and [4℄ do not extend to 
overthe 
ase of more general L-fun
tions, su
h as GL2 L-fun
tions.Let us 
all 
oprime two fun
tions in Selberg's 
lass S (see [10℄) ea
hhaving a fa
torization into primitive fun
tions (in the sense of Selberg [10℄)
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h that there are no 
ommon fa
tors of su
h fa
torizations. AssumingSelberg's Conje
tures 1.1 and 1.2 in [10℄, we see that B(IV) holds for 
o-prime fun
tions. Hen
e, assuming Hypothesis D for every fun
tion in S,we may regard the lower bound in Theorem 1, in the 
ase of 
oprime fun
-tions, as a 
onsequen
e of Selberg's 
onje
tures. Another 
onsequen
e ofSelberg's 
onje
tures is that S has unique fa
torization (see Conrey{Ghosh[2℄). We remark here that the latter 
onsequen
e of Selberg's 
onje
tures iseasily implied by a very weak form of the former. Pre
isely, assuming thattwo 
oprime fun
tions in S have D(T ) � 1 for suÆ
iently large T , we getthe unique fa
torization in S. In fa
t, the assumption implies that two 
o-prime fun
tions are ne
essarily distin
t, and this 
learly implies the uniquefa
torization.Theorem 1 appears to be the limit of our method, although mu
h moreis expe
ted to hold. For instan
e, if L1(s) and L2(s) are distin
t primitivefun
tions, we expe
t that almost all zeros of L1(s) and L2(s) are distin
t,i.e., D(T ) � �1 + �2� T log T;in whi
h 
ase almost all zeros are a
tually strongly distin
t, or even thatD(T ) = N1(T ) +N2(T ) +O(1);i.e., L1(s) and L2(s) have O(1) 
ommon non-trivial zeros.The proof of Theorem 1 is based on Bombieri{Hejhal's [1℄ variant ofSelberg's [9℄ moments method, whi
h leads in a more dire
t way to the dis-tribution fun
tion for the logLj(1=2+ it) (see Theorem B of [1℄). Althoughwe 
ould follow a variant more in the spirit of Selberg [9℄ and Fujii [6℄, wewill prove Theorem 1 by means of a short intervals analog of the abovementioned Theorem B, whi
h we believe to be of interest in itself.Let M � 10, write h =M=log T andVj(t) = logLj(1=2 + i(t+ h)) � logLj(1=2 + it)(2�nj logM)1=2 ;and let �T denote the asso
iated probability measure on C N , de�ned by(2) �T (
) = 1T jft 2 [T; 2T ℄ : (V1(t); : : : ; VN (t)) 2 
gjfor every open set 
 � CN . Moreover, let e��kzk2 denote the gaussianmeasure on CN and let d! be the eu
lidean density on C N .Theorem 2. Let L1(s); : : : ; LN (s) satisfy Hypotheses B and D and letM =M(T )!1 with M � (log T )= log log T as T !1. Then, as T !1,�T tends to the gaussian measure with asso
iated density e��kzk2 d!.



Distin
t zeros of L-fun
tions 275We remark that we 
an easily get a slight variant of Theorem 2, whereh = M=log t and M =M(t)!1 with M � log1�" t as t!1. Therefore,if we separate the Vj(t) into their real and imaginary parts, Theorem 2 
anbe expressed by saying that the fun
tionslog ��Lj�12 + i�t+ Mlog t����� log ��Lj� 12 + it���(2�nj logM)1=2 ; j = 1; : : : ; N;and argLj� 12 + i�t+ Mlog t��� argLj� 12 + it�(2�nj logM)1=2 ; j = 1; : : : ; N;be
ome distributed, in the limit of large t, like independent random vari-ables, ea
h having gaussian density exp(��u2)du, provided M ! 1 withM � log1�" t as t!1.A
knowledgments. The se
ond named author wishes to thank theInstitute for Advan
ed Study for its hospitality and for providing ex
ellentworking 
onditions.2. Basi
 lemmas. In this se
tion we follow the arguments in Se
tion 5of Bombieri{Hejhal [1℄. For � > 1 and j = 1; : : : ; N we writelogLj(s) = 1Xn=1 
j(n)�1(n)n�s; �1(n) = � 0; n = 1;�(n)=log n; n � 2;and denote by u(x) a real positive C1 fun
tion with 
ompa
t support in[1; e℄ and by eu(s) its Mellin transform. We also writev(x) = 1\x u(t) dtand assume that u is normalized so that v(0) = 1. We refer to Lemma 1 of[1℄ and the remark following it for relevant properties of eu(s).By (5.4) of [1℄ we have the approximate formulalogLj(1=2 + it) = 1Xn=1 
j(n)�1(n)n1=2+it v(e(log n)= logX)(3) +X% 1\1=2 1%� s eu(1 + (%� s) logX) d� +O(1);where jtj is suÆ
iently large and not the ordinate of a zero of Lj(s), where2 � X � t2 and where % runs over zeros of Lj(s) with 0 � Re % � 1. Wewrite (3) aslogLj(1=2 + it) = Dj(1=2 + it;X) +Rj(1=2 + it;X)where Dj(1=2 + it;X) is the Diri
hlet series on the right hand side of (3).



276 E. Bombieri and A. Perell iFrom Lemma 3 of [1℄ we immediately get our �rst basi
 lemma.Lemma 1. Assume Hypotheses B and D, and let 2 � X � T a=2 and TsuÆ
iently large. Then for j = 1; : : : ; N we have2T\T jRj(1=2 + it;X)j dt� T log TlogX :Our se
ond basi
 lemma is a short intervals analog of Lemma 6 of [1℄,i.e., the mixed moments of the di�eren
es of the Dj(1=2 + it;X). Sin
e theproof of Lemma 2 below follows that of Lemma 6 of [1℄, we will only sket
hit. For suÆ
iently large M , write h =M=log T and�j(t) = Dj(1=2 + i(t+ h);X) �Dj(1=2 + it;X):Moreover, let kj � 0 and lj � 0, j = 1; : : : ; N , be integers and let usabbreviate k = (k1; : : : ; kN ), Kj = k1 + : : :+ kj , K = KN and similarly forl; Lj and L. We also write k! =QNj=1 kj !.We state here the basi
 estimate we will repeatedly use in the proof ofLemma 2. For X � 3 we have(4) Xp aj(p)ak(p)p v(e(log p)=logX)2je�ih log p � 1j2= Æjk 2nj log+�h2 logX�+O(1)uniformly for h � 1=log logX, where log+ x = max(log x; 0). In fa
t,je�ih log p � 1j = 4 sin2((h=2) log p) and hen
e (4) follows from B(IV) bypartial summation (see also (3.8) of [1℄).Lemma 2. Assume Hypothesis B and let X � T 1=(K+L+1) and M �(log T )=log logX. Write�j(t) = 1Xn=1 bj(n)n1=2+it ; bj(n) = 
j(n)�1(n)v(e(log n)=logX)(e�ih logn � 1):Then2T\T NYj=1(�j(t))kj (�j(t))ljdt = Æk;l k!T NYj=1�2nj log+�M2 log TlogX��kj+O�T�log+�M2 log TlogX��(K+L�1)=2�:P r o o f. We may 
learly assume that K+L � 1. For notational simpli
-ity, we abbreviate �j = �j(t). Sin
e �j is supported at prime powers only,we split it as �j = �0j +�00j
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t zeros of L-fun
tions 277where �0j ranges over primes p and �00j over prime powers pr, r � 2. Then,a

ordingly, we get(5) NYj=1(�j)kj (�j)lj = NYj=1(�0j)kj (�0j)lj +R(t);where, as in the proof of Lemma 6 of [1℄,(6) 2T\T jR(t)j dt� 2T\T j�00j1 jj�0j2 jK+L�1 dt+ 2T\T j�00j3 jK+L dtfor a suitable 
hoi
e of j1; j2 and j3.Sin
e e�ih logn � 1� 1, by (5.14) of [1℄ we have(7) 2T\T j�00j j2(K+L) dt� Tfor j = 1; : : : ; N , provided X � T 1=(K+L+1).By Montgomery{Vaughan's mean-value theorem for Diri
hlet polynomi-als (see, e.g., Lemma 4 of [1℄) we have2T\T j�0j j2(K+L) dt = TX jB0(n)j2n +O�X jB0(n)j2�;where B0(n) = Xp1:::pK+L=n bj(p1) : : : bj(pK+L):Sin
e 
j(p) = aj(p) and �1(p) = 1, from (5.16) of [1℄ and (4) we getX jB0(n)j2n � (K + L)!�Xp jbj(p)j2p �K+L � �log+�M2 log TlogX��K+L:Moreover, from (5.17) of [1℄ we obtainX jB0(n)j2 � X(1+")(K+L) ;and hen
e(8) 2T\T j�0j j2(K+L) dt� T�log+�M2 log TlogX��K+Lprovided X � T 1=(K+L+1).From (6){(8) and H�older's inequality we get(9) 2T\T jR(t)j dt� T�log+�M2 log TlogX��(K+L�1)=2provided X � T 1=(K+L+1).



278 E. Bombieri and A. Perell iIn order to treat the main produ
t on the right hand side of (5) we useagain Lemma 4 of [1℄. We abbreviate n = (n1; : : : ; nK),b(n;k) = NYj=1 KjYr=Kj�1+1 bj(nr) and B(n;k) = Xn1:::nK=n b(n;k);and as in (5.18) of [1℄ we have2T\T NYj=1(�0j)kj (�0j)lj ; dt = TX B(n;k)B(n; l)n(10) +O��X jB(n;k)j2�1=2�X jB(n; l)j2�1=2�;where the sums are restri
ted to n of type n = p1 : : : pK for k and n =q1 : : : qL for l; here p and q denote prime numbers. By a variant of theargument leading to (8) we see that(11) �X jB(n;k)j2�1=2�X jB(n; l)j2�1=2� T�log+�M2 log TlogX��(K+L�1)=2provided X � T 1=(K+L+1).In view of (5), (9), (10) and (11), to 
omplete the proof of Lemma 2 itsuÆ
es to show thatX B(n;k)B(n; l)n = Æk;l k! NYj=1�2nj log+�M2 log TlogX��kj(12) +O��log+�M2 log TlogX��(K+L�1)=2�:If K 6= L there is nothing to prove, sin
e B(n;k)B(n; l) = 0 for every n; we
an therefore assume K = L � 1 and pro
eed by indu
tion as in Lemma 6of [1℄.If K = 1, (12) follows immediately from (4). Suppose now that K � 2.Arguing again as in Lemma 6 of [1℄ and using (3.8) of [1℄, we see that the
ontribution to the left hand side of (12) 
oming from n's whi
h are notsquare-free is � �log+�M2 log TlogX��(K+L�1)=2:In order to deal with the remaining part of the sum on the left hand sideof (12) we pro
eed as on pp. 847{849 of [1℄, with some obvious 
hanges to
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tions 279take into a

ount the fa
tor e�ih log n � 1 in our de�nition of the bj(n). Inthis way we see that (12) holds for any K � 1, and Lemma 2 is proved.We remark that we 
an easily obtain a version of Lemma 2 with h re-pla
ed by M=log t, provided an additional error termO�T (log logX)K+LM logXlog2 T �is added in the statement of Lemma2. We leave its veri�
ation to the reader.3. Proof of theorems. The proof of Theorem 2 follows 
losely that ofTheorem B of [1℄. Let M !1 as T !1 and 
hooselogX = log T(logM)1=4 ;so thatlog+�M2 log TlogX� � logM; logXlog T = (logM)�1=4; X = T o(1):Moreover, let Uj(t) = (2�nj logM)�1=2�j(t)and e�T be the asso
iated probability measure on CN , de�ned as in (2).Then, assuming that M � (log T )=log log T and arguing exa
tly as inthe proof of Theorem B of [1℄, from Lemma 2 we see that e�T 
onverges, asT ! 1, to the gaussian measure e��kzk2 . Also, from Lemma 1 we easilydedu
e that 1T 2T\T jVj(t)� Uj(t)j dt� (logM)�1=4;and hen
e �T 
onverges to the same gaussian measure, 
ompleting the proof.The proof of Theorem 1 is by 
ontradi
tion. Let T� be a sequen
e alongwhi
h D� := D(2T� ; L1; L2)�D(T� ; L1; L2) = o(T� log T�):We set(13) M� = min� log T�log log T� ;rT� log T�1 +D� �:Then M� ! 1 and M� � (log T�)= log log T� , so that Theorem 2 is appli-
able to L1, L2 and the sequen
e T� , M� .Write h� =M�= log T� ;�N (t; h�) = (N1(t+ h�)�N1(t))� (N2(t+ h�)�N2(t));�S(t; h�) = (S1(t+ h�)� S1(t)) � (S2(t+ h�)� S2(t))



280 E. Bombieri and A. Perell iand observe that (1) and �1 = �2 imply(14) �N (t; h�) = �S(t; h�) +O� M�log T��uniformly for t 2 [T� ; 2T� ℄.For j = 1; 2 and t 2 [T� ; 2T� ℄ we have(15) ImVj(t) = �(2�nj logM�)1=2 (Sj(t+ h�)� Sj(t)):Thus from (14) and (15) we see that if t 2 [T� ; 2T� ℄ is su
h that(16) ImV2(t) < 0 and ImV1(t) > 1;then �N (t; h�) = 1� (2�n1 logM�)1=2 ImV1(t)� 1� (2�n2 logM�)1=2 ImV2(t) +O(M�= log T�)� 1� (2�n1 logM�)1=2 +O(M�= log T�):Denote by E� the set of t 2 [T� ; 2T� ℄ for whi
h (16) holds.In order to get a lower bound for jE� j, we 
onsider the set
 = f(z1; z2) 2 C 2 : Im z1 > 1 and Im z2 < 0g;so that(17) jE� j = T� �T� (
):From Theorem 2 we obtain(18) lim�!1�T� (
) = \
 e��kzk2 d! � 1:From (15), (17) and (18) we see that jE� j � T� , and hen
e we dedu
ethe existen
e of � T�=h� values tr 2 [T� ; 2T� ℄, with jtr � tsj � h� if r 6= s,su
h that �N (tr; h�) � 1� (2�n1 logM�)1=2 +O(M�= log T�):Therefore(19) D� �Xr �N (tr; h�)� plogM�M� T� log T� :Now re
all that(13) M� = min� log T�log log T� ;rT� log T�1 +D� �:
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t zeros of L-fun
tions 281If in (13) we have M� = (log T�)= log log T� we must also haveD� � T� (log log T�)2log T� ;while (19) gives D� � T�(log log T�)3=2, a 
ontradi
tion. The other al-ternative in (13) gives M� = p(T� log T�)=(1 +D�), whi
h substituted in(19) shows that D� � T� log T� ; this 
ontradi
ts our assumption D� =o(T� log T�).The proof of Theorem 1 is 
omplete.Referen
es[1℄ E. Bombier i and D. A. Hejha l, On the distribution of zeros of linear 
ombinationsof Euler produ
ts, Duke Math. J. 80 (1995), 821{862.[2℄ J. B. Conrey and A. Ghosh, On the Selberg 
lass of Diri
hlet series: small degrees,ibid. 72 (1993), 673{693.[3℄ J. B. Conrey, A. Ghosh and S. M. Gonek, Simple zeros of the zeta fun
tion ofa quadrati
 number �eld , I , Invent. Math. 86 (1986), 563{576.[4℄ |, |, |, Simple zeros of the zeta fun
tion of a quadrati
 number �eld , II , in: Ana-lyti
 Number Theory and Dioph. Probl., A. C. Adolphson et al. (eds.), Birkh�auser,1987, 87{114.[5℄ A. Fuj i i, On the zeros of Diri
hlet's L-fun
tions. I , Trans. Amer. Math. So
. 196(1974), 225{235.[6℄ |, On the zeros of Diri
hlet's L-fun
tions. V , A
ta Arith. 28 (1976), 395{403.[7℄ J. Ka
zorowski and A. Pere l l i, Fun
tional independen
e of the singularities ofa 
lass of Diri
hlet series, Amer. J. Math., to appear.[8℄ W. Luo, Zeros of He
ke L-fun
tions asso
iated with 
usp forms, A
ta Arith. 71(1995), 139{158.[9℄ A. Se lberg, Contributions to the theory of the Riemann zeta-fun
tion, Ar
hivMath. Naturvid. 48 (1946), 89{155; Colle
ted Papers, Vol. I, Springer, 1989, 214{280.[10℄ |, Old and new 
onje
tures and results about a 
lass of Diri
hlet series, in: Pro
.Amal� Conf. Analyti
 Number Theory, E. Bombieri et al. (eds.), Universit�a diSalerno, 1992, 367{385; Colle
ted Papers, Vol. II, Springer, 1991, 47{63.S
hool of Mathemati
s Dipartimento di Matemati
aInstitute for Advan
ed Study Via Dode
aneso 35Prin
eton, New Jersey 08540 16146 GenovaU.S.A. ItalyE-mail: eb�math.ias.edu E-mail: perelli�dima.unige.itRe
eived on 24.3.1997 (3156)


