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Distinct zeros of L-functions
by

E. BomBIERI (Princeton, N.J.) and A. PERELLI (Genova)

1. Introduction. Let Li(s) and Ly(s) be two “independent” L-func-
tions, where the meaning of “independent” will be clarified later on. Since
the L-functions are determined by their zeros, we may expect that L;(s) and
Ly(s) have few common zeros. This problem appears to be very difficult at
present, therefore we may ask the easier question of getting a fair quantity of
distinct zeros of such functions. In this paper we show that, under suitable
conditions, Li(s) and Ls(s) have a positive proportion of distinct zeros.

We state our results in the moderately general setting of Bombieri
Hejhal’s paper [1], which also provides the basic ingredients of the present
paper. Moreover, we will work out our main tool, Theorem 2 below, in the
case of several L-functions. Hence, for a given integer N > 2, we consider
N functions Lq(s), ..., Ly(s) satisfying the following basic hypothesis.

HypoTHESIS B. (I) Each function L;(s) has an Euler product of the form

d
Li(s) = [T 11 = ewpp™) 7"

p 1=1

with || < p? for some fized 0 <O < 1/2 and i =1,...,d.
(IT) For every e > 0 we have

d
ZZ |aip‘2 < plte

p<zi=1

(IIT) The functions L;(s) have an analytic continuation to C as mero-
morphic functions of finite order with a finite number of poles, all on the
line o0 = 1, and satisfy a functional equation of the form

D(s) =ed(1 — s),
where @(s) = Q[ I'(Nis + pi), @ >0, X\; >0, Rep; >0 and |e| = 1.
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(IV) The coefficients aj(p) of the Dirichlet series

oo

Li(s) = ) aj(n)n”*

n=1

satisfy

; 1
Z M = d;xnjloglogx + cji + O< )

et p log =

for certain constants n; > 0.

We explicitly remark that all the data involved in Hypothesis B concern-
ing a function L;(s) may depend on j. We also remark that the conditions
of Hypothesis B may be somewhat relaxed (see Selberg [10]) in order to
deduce our results below.

We refer to Section 3 of [1] for a thorough discussion of Hypothesis B, of
its standard consequences and of several examples of functions satisfying it.
Here we point out only that B(II) implies that both the Dirichlet series and
the Euler product of L;(s) converge absolutely for o > 1, B(I) ensures that
Lj(s) # 0 for 0 > 1 and B(III) gives rise to the familiar notions of critical
strip, critical line and trivial and non-trivial zeros. Moreover, writing

A =",
i=1
N;(t) =/{o: Lj(o) =0, 0<Rep<1and 0 <Imp <t}
and
1
S;(t) = —arg L;(1/2 +it),
. . .

for sufficiently large ¢t we have

(1) Nj(t):%tlogt%—cﬂ%—c_’i—i—Sj(t)—i—O(l/t)
with certain constants ¢; and cj.

Condition B(IV), introduced by Selberg [10], plays a special role, since
it provides a form of “near-orthogonality” of the functions L;(s); the “in-
dependence” alluded to at the beginning of the section comes from this
“near-orthogonality”. For instance, B(IV) implies that Li(s),...,Lx(s)
are linearly independent over C; see Bombieri-Hejhal [1] and Kaczorowski-
Perelli [7] for further results in this direction.

We expect that the functions L,(s) satisfy the Generalized Riemann
Hypothesis. As a substitute of it in our arguments, we will instead assume
the following density estimate. Let

N;j(o0,T) =[{e: Lj(0) =0, Rep > o and Imp| < T}|.
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HYPOTHESIS D. There exists 0 < a < 1 such that
Nj(0,T) < T*=7=1/2) Jog T
uniformly for o > 1/2 and j =1,...,N.

The main point in introducing Hypothesis D is that, unlike the Gener-
alized Riemann Hypothesis, it can be verified in many interesting cases. In
fact, it has been proved by Selberg [9] for the Riemann zeta function, by
Fujii [5] for Dirichlet L-functions, and by Luo [8] in the more difficult case
of L-functions attached to certain modular forms.

In order to state our main result, we define the counting function
D(T, Ly, Ly) of the distinct non-trivial zeros, counted with multiplicity, of
two functions Lj(s) and La(s) as

D(T,Ly, L) = Y max(my (o) — ma(e),0),
0<Re <1
0<Im o<T
where g runs over the zeros of Li(s)Ly(s) and is counted without multiplic-
ity. We also define

D(T) = D(T,L1,Ly) + D(T, Ly, L) = Y [ma(e) — ma(o)],
0<Re p<1
0<Im o<T
with the same convention about p.
Our main result is

THEOREM 1. Let Li(s) and Ls(s) satisfy Hypotheses B and D and sup-
pose that Ay = As. Then

D(T,Ly,Ly) > TlogT.

Clearly, the same lower bound holds for D(T, Ly, L;) and D(T) too.

The first result of this type has been obtained by Fujii [6] in the case of
two primitive Dirichlet L-functions, by means of Selberg’s moments method.
The problem of counting strongly distinct zeros, i.e., zeros placed at dif-
ferent points, appears to be more difficult, and the best result is due to
Conrey—Ghosh—Gonek [3], [4]. They deal with this problem, in the case of
two primitive Dirichlet L-functions, by considering the more difficult ques-
tion of getting simple zeros of L(s,x1)L(s,x2), and show that there are
> T/ such zeros up to 7. Moreover, if the Riemann Hypothesis is as-
sumed for one of the two functions, then a positive proportion of such zeros
is obtained. However, the techniques in [3] and [4] do not extend to cover
the case of more general L-functions, such as GLy L-functions.

Let us call coprime two functions in Selberg’s class S (see [10]) each
having a factorization into primitive functions (in the sense of Selberg [10])
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such that there are no common factors of such factorizations. Assuming
Selberg’s Conjectures 1.1 and 1.2 in [10], we see that B(IV) holds for co-
prime functions. Hence, assuming Hypothesis D for every function in S,
we may regard the lower bound in Theorem 1, in the case of coprime func-
tions, as a consequence of Selberg’s conjectures. Another consequence of
Selberg’s conjectures is that S has unique factorization (see Conrey Ghosh
[2]). We remark here that the latter consequence of Selberg’s conjectures is
easily implied by a very weak form of the former. Precisely, assuming that
two coprime functions in § have D(T) > 1 for sufficiently large T', we get
the unique factorization in §. In fact, the assumption implies that two co-
prime functions are necessarily distinct, and this clearly implies the unique
factorization.

Theorem 1 appears to be the limit of our method, although much more
is expected to hold. For instance, if Li(s) and Ly(s) are distinct primitive
functions, we expect that almost all zeros of Li(s) and Lo(s) are distinct,
ie.,

D(T)

A+ A
~ ngogT,
s

in which case almost all zeros are actually strongly distinct, or even that
D(T) = N1(T) + N»(T) + O(1),

i.e., Li(s) and La(s) have O(1) common non-trivial zeros.

The proof of Theorem 1 is based on Bombieri Hejhal’s [1] variant of
Selberg’s [9] moments method, which leads in a more direct way to the dis-
tribution function for the log L;(1/2 + it) (see Theorem B of [1]). Although
we could follow a variant more in the spirit of Selberg [9] and Fujii [6], we
will prove Theorem 1 by means of a short intervals analog of the above
mentioned Theorem B, which we believe to be of interest in itself.

Let M > 10, write h = M /logT and

_log Lj(1/2 +i(t+ h)) —log L;(1/2 + it)

Vj(t
i®) (27n; log M)1/? ’

and let 1 denote the associated probability measure on CV, defined by

&) pr(2) = {1 € [1,217): (V1) Va (1)) € 2}

2 .
for every open set 2 C CN. Moreover, let e 77" denote the gaussian

measure on CV and let dw be the euclidean density on CV.

THEOREM 2. Let Li(s),...,Ln(s) satisfy Hypotheses B and D and let
M = M(T) — oo with M < (logT)/loglogT asT — oc. Then, as T — oo,

. . . . — 2
pr tends to the gaussian measure with associated density e~ ™171" duw.
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We remark that we can easily get a slight variant of Theorem 2, where
h = M/logt and M = M (t) — oo with M < log' “t as t — oc. Therefore,
if we separate the V(t) into their real and imaginary parts, Theorem 2 can
be expressed by saying that the functions

log | (5 +(t + 1557)) | —log | L (5 +t) |

(27n; log M)1/2 , J=1...,N,
and . y o
arg Lj (5 +i(t + 1o07)) — arg Lj (5 + it) 0w

(27n; log M)1/2 ’
become distributed, in the limit of large ¢, like independent random vari-
ables, each having gaussian density exp(—mu?)du, provided M — oc with
M <log' ¢t as t — oo.

Acknowledgments. The second named author wishes to thank the
Institute for Advanced Study for its hospitality and for providing excellent
working conditions.

2. Basic lemmas. In this section we follow the arguments in Section 5
of Bombieri Hejhal [1]. For 0 > 1 and j =1,..., N we write
> s 0, n=1,
g 5(5) = 3o s, o) = {ipogn, ns2
and denote by u(z) a real positive C* function with compact support in
[1,e] and by u(s) its Mellin transform. We also write
v(z) = S u(t) dt
and assume that v is normalized so that v(0) = 1. We refer to Lemma 1 of
[1] and the remark following it for relevant properties of u(s).
By (5.4) of [1] we have the approximate formula

. 2L ¢;(n)Ai(n oem)/ 1o
(3)  logLj(1/2+it) = Z%U(ea )/ 10g X)

n=1
oo 1 _
—l—Z S gisu(l—l-(g—s)logX)do—l—O(l),
0 1/2

where |t| is sufficiently large and not the ordinate of a zero of L;(s), where
2 < X < t? and where g runs over zeros of L;(s) with 0 < Rep < 1. We
write (3) as

log L;(1/2 +it) = D;(1/2 + it, X) + R;(1/2 + it, X)
where D;(1/2 +it, X) is the Dirichlet series on the right hand side of (3).
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From Lemma 3 of [1] we immediately get our first basic lemma.

LEMMA 1. Assume Hypotheses B and D, and let 2 < X < T2 and T
sufficiently large. Then for j =1,..., N we have
2T
log T
R;(1/2 4+, X)|dt KT ——.
§ i(1/2 4 it, X)| dt < T {22
Our second basic lemma is a short intervals analog of Lemma 6 of [1],
i.e., the mixed moments of the differences of the D;(1/2 +it, X'). Since the
proof of Lemma 2 below follows that of Lemma 6 of [1], we will only sketch
it. For sufficiently large M, write h = M /log T and

55(8) = Dy(1/2 + it + h), X) — D;(1/2 + it, X).
Moreover, let k; > 0 and I; > 0, 7 = 1,..., N, be integers and let us

abbreviate k = (k1,...,kn), Kj = ki1 +... + k;, K = Ky and similarly for
1, L; and L. We also write k! = H;V:l k.

We state here the basic estimate we will repeatedly use in the proof of
Lemma 2. For X > 3 we have

(4) Z a.i(p)a‘k(p) ,U(e(logp)/logX)2‘€—ihlogp _ 1|2

» p

h
= ;1 2n;log™t (5 logX) +O(1)

uniformly for h < 1/loglog X, where logt 2 = max(logz,0). In fact,
le=ihlogr 1| = 4sin?((h/2)logp) and hence (4) follows from B(IV) by
partial summation (see also (3.8) of [1]).

LEMMA 2. Assume Hypothesis B and let X < TY(E+L+D) gnd M <
(logT)/loglog X. Write

Xi(t) = Z M b;(n) = Cj(n)Al(n)“(e(logn)/logX)(e—ihlogn ).

1/2tit’
n=1 n / !
Then,
2T N N N
(1) M logT j
VT () dt = sk T ] <2nj log* <7 10gx>>
T j=1 og

M log T (K+L—1)/2
T logt [ — .
+O< <0g <2logX>>

Proof. We may clearly assume that K 4+ L > 1. For notational simplic-
ity, we abbreviate X; = X;(¢). Since X; is supported at prime powers only,
we split it as

5= 5+ 5
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where Y ranges over primes p and X7 over prime powers p”, r > 2. Then,
accordingly, we get

N N
(5) [Tz H Y+ R(t),

j=1 j=1

where, as in the proof of Lemma 6 of [1],

2T 2T 2T
(6) VIR e <\ |27 |20, | ae+ | |27 94 dt
T T T

for a suitable choice of j1,j2 and j3.
Since e~i1osn _ 1 <« 1, by (5.14) of [1] we have
2T
(7) | xypethat < T
T
for j =1,...,N, provided X < TV/(K+L+1)
By Montgomery—Vaughan’s mean-value theorem for Dirichlet polynomi-
als (see, e.g., Lemma 4 of [1]) we have
2T
S|EI‘2K+L)(H TZ‘ (Z|B )
T
where

B'(n) = Z bg(pl)bj(pK+L)

P1 Py =N

Since ¢j(p) = a;(p) and A;(p) = 1, from (5.16) of [1] and (4) we get
|B'(n)[2 b, (p) [\ K+L ¢ (M logT\\ """
Z - (K + L)! (Z ) < | log 2 Tog X .

Moreover, from (5.17) of [1] we obtain

Z‘B << X 1+E)(K+L)
and hence
2T K+L
M logT
8 SPEAD) gt < (1 —
(8) S | ‘ < og 2 Tog X

T

provided X < T/ (K+L+1)
From (6) (8) and Holder’s inequality we get

27 (K+L—1)/2
M logT
dt < T|] —
@ ] IR@) de < (106" (5125 ))

provided X < T/ (K+L+1)
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In order to treat the main product on the right hand side of (5) we use
again Lemma 4 of [1]. We abbreviate n = (ny,...,ng),

b(n.k) = [[ H bj(n,) and B(n,k)= Y b(nk),

j=1 r:K]-,1+1 ny..nKg=n

and as in (5.18) of [1] we have

2T N

ao) | [IEs @y 4 =7y BrkBeD

J n

ro((XBr) (X isemn?) "),

where the sums are restricted to n of type n = py...p, for k and n =
q1-..q, for I; here p and g denote prime numbers. By a variant of the
argument leading to (8) we see that

1y (R Bmwr) (S Bmne)”

M log T (K+L-1)/2
< T<10g+ <710:X>>

T j=1

provided X < T/ (K+L+1)
In view of (5), (9), (10) and (11), to complete the proof of Lemma 2 it
suffices to show that

B(n,k)B(n,1) T L[ MlogT\\"
(12) ZT = S k! T (27 1og 2 o X

j=1

+ (M logT (K+L-1)/2
+ 0| | log 710gX .

If K # L there is nothing to prove, since B(n,k)B(n,1) = 0 for every n; we
can therefore assume K = L > 1 and proceed by induction as in Lemma 6
of [1].

If K =1, (12) follows immediately from (4). Suppose now that K > 2.
Arguing again as in Lemma 6 of [1] and using (3.8) of [1], we see that the
contribution to the left hand side of (12) coming from n’s which are not

square-free is
M logT (K+L-1)/2
log™ | = :
< (v (F5ex))

In order to deal with the remaining part of the sum on the left hand side
of (12) we proceed as on pp. 847 849 of [1], with some obvious changes to
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take into account the factor e=""1°8™ — 1 in our definition of the b;(n). In

this way we see that (12) holds for any K > 1, and Lemma 2 is proved.

We remark that we can easily obtain a version of Lemma 2 with A re-
placed by M /logt, provided an additional error term

Mlog X
@) <T(log log X)K+E #)
log®T
is added in the statement of Lemma 2. We leave its verification to the reader.

3. Proof of theorems. The proof of Theorem 2 follows closely that of
Theorem B of [1]. Let M — oo as T'— oo and choose

logT
log X = ————
%% (log M)
so that
M logT log X _
log™ [ =— ~log M = (log M)~V X =71°W),
og (210gX> o8 M, 1T (log M)~"/%,

Moreover, let
U;(t) = (2mn log M)~ /2 3;(t)
and Jir be the associated probability measure on CV, defined as in (2).

Then, assuming that M < (logT)/loglogT and arguing exactly as in
the proof of Theorem B of [1], from Lemma 2 we see that g converges, as

T — oo, to the gaussian measure ezl Also, from Lemma 1 we easily
deduce that
127
7 Vi) = Us()] dt < (log M)/,
T

and hence p1,- converges to the same gaussian measure, completing the proof.

The proof of Theorem 1 is by contradiction. Let T;, be a sequence along
which
D, :=D(2T,.Ly,Ly) — D(T,,Ly,Ly) = o(T, logT,).
We set

log T, T,logT,
(13) M, =min | —2-v_  fZv 087y )
log log T, 1+ D,

Then M, — oo and M, < (logT,)/loglogT,, so that Theorem 2 is appli-
cable to Ly, Ly and the sequence T,,, M,.
Write

h, = M,,/logT,,,
An(t,hy) = (N1(t + hy) — N1(t)) — (Na(t + hy) — Na(t)),
Ag(t,hy) = (S1(t+ hy) — S1(t)) — (S2(t + hy) — Sa(t))
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and observe that (1) and A; = Ay imply

M,
(14) AN(t,h/u) _As(t’hy)+0<10gTy>

uniformly for t € [T,, 2T, ].
For j = 1,2 and t € [T,,2T,] we have

(15) V(1) = o s (St ) = 85(0).

Thus from (14) and (15) we see that if ¢ € [T,,2T,] is such that
(16) ImVs(t) <0 and TImVi(t) > 1,
then

1
An(t, hy) = —(27ny log M,)/2 Tm Vi (£)

P
1
— —(2mns log M,)Y? Tm Vy(t) + O(M,,/ log T,)

> —(2mny log M,))Y? + O(M,/ log T,).

5|~

Denote by E, the set of ¢t € [T,,2T,] for which (16) holds.
In order to get a lower bound for |E, |, we consider the set

Q2 ={(21,20) €C?> :Imz > 1 and Imz, < 0},

so that
(17) ‘EV‘ :TU “T,,(‘Q)
From Theorem 2 we obtain
(18) lim g, (2) = e ™"V dw > 1,
v—00 v
7;

From (15), (17) and (18) we see that |F,| > T,, and hence we deduce
the existence of > T, /h, values t,. € [T,,2T,], with |t, — t;| > h, if r # s,
such that

1
An(tr, hy) > — (2704 log Ml,)l/2 +O(M,/logT,).
T
Therefore
v/1og M,
(19) D, >3 An(te ) > %Ty log T,

T

Now recall that

log T, T, logT,
(13) M, = min 08 A/ o8 .
log log T, 1+ D,
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If in (13) we have M, = (logT,)/loglogT, we must also have

(loglog T;,)*

DV S TU )
log T,

while (19) gives D, > T,(loglogT,)??, a contradiction. The other al-
ternative in (13) gives M, = \/(T,, logT,)/(1 + D,), which substituted in
(19) shows that D, > T,logT,; this contradicts our assumption D, =
o(T,logT,).

The proof of Theorem 1 is complete.
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