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1. Introduction. The object of this paper is to extend the range of
validity of a well-known result of prime number theory. We deal with the
Selberg integral

J(x, h) :=
2x\
x

∣∣∣∣π(t)− π(t− h)− h

log t

∣∣∣∣
2

dt.

The Prime Number Theorem suggests that J(x, h) should be of lower order
of magnitude than xh2(log x)−2, at least when h is not too small with re-
spect to x, and the Brun–Titchmarsh inequality trivially implies J(x, h)�
xh2(log x)−2 provided only that h ≥ xε for some fixed ε > 0.

We prove the following

Theorem. We have

J(x, h)� xh2

(log x)2

(
ε(x) +

log log x
log x

)2

provided that x1/6−ε(x) ≤ h ≤ x, where 0 ≤ ε(x) ≤ 1/6 and ε(x) → 0 as
x→∞.

It is well known that Huxley’s density estimates [5] for the zeros of
the Riemann zeta-function yield J(x, h) = o(xh2(log x)−2), but only for
h ≥ x1/6(log x)C , for some C > 0. The weaker result with h ≥ x1/6+ε is
proved in Saffari and Vaughan [8], Lemma 5, and in [13], where an identity
of Heath-Brown (Lemma 1 of [3]) is used.

This paper is inspired by Heath-Brown’s extension [4] of Huxley’s The-
orem [5] that

π(x)− π(x− h) ∼ h(log x)−1

to the range h ≥ x7/12−ε(x). This was achieved by means of another identity
(see (2.2) of [4], or Lemma 2 below), thereby avoiding a direct appeal to the
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properties of the zeros of the Riemann zeta-function, besides Vinogradov’s
zero-free region. We extend this approach to the above integral.

An immediate consequence of this result is that if x1/6−ε(x) ≤ h ≤ x
then for “almost all” n ∈ [x, 2x] ∩N we have π(n)− π(n− h) ∼ h(log n)−1.
Here “almost all” means that the above asymptotic equality fails for at most
o(x) values of n ∈ [x, 2x] ∩ N. Relaxing our demand to π(n) − π(n − h) �
h(log n)−1 for almost all n’s, one can take h even smaller, and the best result
up to date is due to Jia [6] who showed that h ≥ x1/20+ε is acceptable,
provided that x is large enough.

I thank Alberto Perelli for his unfailing help and János Pintz for some
helpful suggestions. Many thanks are due to the referee for a very careful
reading of my manuscript and numerous useful remarks.

2. Preliminaries. We assume throughout that x is sufficiently large.
For the sake of brevity we set L := log x. Our estimates will be uniform
with respect to all parameters but k0, which will eventually be chosen as
4. For ease of reference, our notation is consistent, as far as possible, with
the notation in [4], and will be introduced at appropriate places. A few
comments on the proof are collected at the end of the paper.

Lemma 1. The Theorem follows from the estimate

J ′(x, θ) :=
2x\
x

∣∣∣∣π(t)− π(t− θt)− θt

log t

∣∣∣∣
2

dt� x3θ2

L2

(
ε(x) +

log log x
log x

)2

,

uniformly for x−5/6−ε(x) ≤ θ ≤ 1.

Lemma 2 (Linnik–Heath-Brown’s identity). For z > 1 we have

(2.1) log(ζ(s)Π(s)) =
∑

k≥1

(−1)k−1

k
(ζ(s)Π(s)− 1)k =

∑

k≥1

∑

p≥z

1
kpks

,

where

Π(s) :=
∏
p<z

(
1− 1

ps

)
.

For Lemma 1 see the proof of Lemma 6 of [8]. Lemma 2 follows from
(2.2)–(2.3) of [4].

For t ∈ [x, 2x] we use the interval I = I(t, θ) = (t−θt, t], and a parameter
z satisfying

x1/k0 < z ≤ x1/3.

We pick out the coefficients in the above identity for the terms with n ∈ I.
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We have

(2.2)
∑

k≥1

1
k
|{p : pk ∈ I, p ≥ z}| = π(t)− π(t− θt) +O(θx1/2 + log x),

the contribution from prime powers being negligible. Now the Dirichlet series
for ζ(s)Π(s) − 1 is

∑
n≥z a(n)n−s where a(1) = 0 and a(n) = 0 unless all

prime factors of n are≥ z, in which case a(n) = 1. Furthermore, the Dirichlet
series for (ζ(s)Π(s) − 1)k is

∑
n≥z ak(n)n−s, ak being the k-fold Dirichlet

convolution of a with itself. This means that ak(n) = 0 unless n ≥ zk and
p ≥ z for all p |n. Hence there are no terms n−s with n ∈ I and k ≥ k0, and
we may consider only the values k < k0.

As pointed out in Section 2 of [4], the above identity does not give
suitable Dirichlet polynomials at once, and we first need to approximate the
above Dirichlet series by manageable Dirichlet polynomials. We set

ζt(s) :=
∑

n≤t

1
ns
.

We introduce parameters z1 ∈ [3, z) and z2 := zδ1 , where δ ≥ 2 and define
vn by means of

Π0(s) :=
∏
p<z1

(
1− 1

ps

)
=
∑

n≥1

µ(n)vn
ns

.

Then define Π1(s) := Π(s)Π0(s)−1, L to be the integer such that zL1 ≤
2x < zL+1

1 and

Π2(s) :=
∑
n<z2

µ(n)vn
ns

, Σm(s) :=
∑

z1≤p<z

1
pms

,

for m = 1, . . . , L. Finally, we set

Π∗(s) :=
L∏

m=1

Π∗m(s) where Π∗m(s) :=
L/m∑

l=0

(−1)l

l!ml
Σm(s)l.

We remark that our choice of the parameters ensures that the coefficient
of n−s in Π1(s) is the same as the coefficient of n−s in Π∗(s). We now
introduce the Dirichlet polynomials we shall work with. Let B, C, and D
be integers such that

t/2 < 2B ≤ t, z2/2 < 2C ≤ z2, z/2 ≤ 2D < z,

and set

ζt(s) =
B∑

b=0

Xb(s), Xb(s) :=
∑

2−1−bt<n≤2−bt

n−s,(2.3)
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Π2(s) =
C∑
c=0

Yc(s), Yc(s) :=
∑

2−1−cz2<n≤2−cz2

µ(n)vnn−s,(2.4)

Σm(s) =
D∑

d=0

Z
(m)
d (s), Z

(m)
d (s) :=

∑

2−1−dz<p≤2−dz
p≥z1

p−ms.(2.5)

Hence, for suitable coefficients cm,h, we have

(2.6) (ζt(s)Π2(s)Π∗(s))h =
M(h)∑
m=1

cm,hW (s;m,h),

where the Dirichlet polynomials W have the form

(2.7) W (s;m,h) = WX(s;m,h)WY (s;m,h)WZ(s;m,h),

with

(2.8)

WX(s) :=
h∏

i=1

Xbi(s), WY (s) :=
h∏

i=1

Yci(s),

WZ(s) :=
L∏

m=1

Im∏

i=1

Z
(m)
di

(s),

where each Im is ≤ hL/m, and we dropped m and h for brevity. Writing

(2.9) Xi := 2−1−bit, Yi := 2−1−ciz2, Zi := 2−1−diz,

and I =
∑
m Im, we have

(2.10) W (s;m,h) =
∑

N1<n≤N2

em,h(n)
ns

,

where

(2.11) N1 :=
h∏

i=1

XiYi ·
L∏

m=1

Im∏

i=1

Zi and N2 := 22h+IN1.

Since we are interested in the coefficients of the terms n−s with n ∈ I(t, θ),
we may obviously discard those sums W (s) with N1 ≥ t or N2 ≤ t/2,
leaving, after relabeling,

N(h)∑
m=1

cm,hW (s;m,h),

say. As usual, we denote by dm(n) the coefficient of n−s in ζm(s). We now
state the following results, the first being a consequence of Theorem 2 of
Shiu [9].
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Lemma 3. For fixed ε > 0 and m, h ∈ N we have
∑

x≤n≤x+y

dhm(n)�ε,m,h y(log x)m
h−1,

uniformly for xε ≤ y ≤ x.

Lemma 4. For t ∈ [x, 2x] there exist Dirichlet polynomials W (s;m,h)
satisfying (2.3)–(2.11) such that

∑

n∈I(t,θ)

ak(n) =
k∑

h=0

(−1)k−h
(
k

h

)N(h)∑
m=1

cm,h
∑

n∈I(t,θ)

em,h(n) +O(xθL3kδ−δ/3)

when z1z2 ≤ x1/8 and δ ≥ (log log z1)2.

The proof is quite similar to the proof of Lemma 3 of [4], using Lemma 3
above. We omit it for brevity. Set

Σ(h, t, θ) :=
N(h)∑
m=1

cm,h
∑

n∈I(t,θ)

em,h(n)

(here a minor clash with the notation of [4] occurs). Then

S(t, θ) := π(t)− π(t− θt) =
∑

1≤k<k0

k∑

h=0

α(h, k)Σ(h, t, θ) +O(E(t, θ, δ)),

say, where α(h, k)� 1 and E(t, θ, δ)� θ(x1/2 + xL3kδ−δ/3) by (2.1), (2.2)
and Lemma 4. Our aim is to prove that each Σ can be written as

(2.12) Σ(h, t, θ) = θM(h, t) + R(h, t, θ),

where M(h, t) is independent of θ and R(h, t, θ) is small in L2 norm over
[x, 2x]. In fact, assume that (2.12) holds for suitable M and R, and let

M(t) :=
∑

1≤k<k0

k∑

h=0

α(h, k)M(h, t),

R(t, θ) :=
∑

1≤k<k0

k∑

h=0

α(h, k)R(h, t, θ),

so that S(t, θ) = θM(t) + R(t, θ) + O(E(t, θ, δ)). Since (a + b + c)2 �
a2 + b2 + c2 we have

J ′(x, θ)�
2x\
x

{
θ2
(

M(t)− t

log t

)2

+ R(t, θ)2
}
dt(2.13)

+ θ2x3L3k−2(δ−δ/3 + L3kδ−2δ/3).
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The error term is �A x3θ2L−A for any fixed A, provided that δ ≥ logL,
which we assume. Hence by Lemma 1 and (2.13) we have proved

Lemma 5. The Theorem follows from the estimates
2x\
x

(
M(t)− t

log t

)2

dt� x3

L2

(
ε(x) +

log log x
log x

)2

,(2.14)

2x\
x

|R(t, θ)|2 dt� x3θ2

L2

(
ε(x) +

log log x
log x

)2

(2.15)

uniformly for x−5/6−ε(x)≤θ≤ 1, provided that δ ≥ max(logL, (log log z1)2).

We shall prove the first part of Lemma 5 in Section 5 by taking θ “large”,
whereas the proof of the other estimate is achieved by means of mean-value
bounds as described below.

3. The case k ≤ 2: reduction to mean-value estimates. For brevity
we write s = s(τ) = 1/2 + iτ throughout this section. By Perron’s formula
(see Lemma 3.12 of [10]) we have

Σ(h, t, θ) =
1

2πi

N(h)∑
m=1

cm,h

T0\
−T0

W (s;m,h)
ts − (t− θt)s

s
dτ(3.1)

+O

( 1∑

j=0

N(h)∑
m=1

|cm,h|
N2(m)∑

n=N1(m)+1

|em,h(n)|
(
x

n

)1/2

×min
(

1, T−1
0

∣∣∣∣ log
t− jθt
n

∣∣∣∣
−1))

.

The error term is estimated in Section 6 where we prove that

Σ(h, t, θ) =
1

2πi

N(h)∑
m=1

cm,h

T0\
−T0

W (s;m,h)
ts − (t− θt)s

s
dτ(3.2)

+O

(
x

T0
e2I(logN7)3h

)
,

where

N7 := max
1≤m≤N(h)

N2(m).

The main term of Σ will come from a short interval: for |τ | ≤ T1 we have

(3.3)
ts − (t− θt)s

s
= θts +O(|s|θ2t1/2).
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Hence, setting S0 = S0(h) :=
∑N(h)
m=1 |cm,h|,

(3.4)

M(h, t) :=
1

2πi

N(h)∑
m=1

cm,h

T1\
−T1

W (s(τ);m,h)ts dτ,

J0 = J0(h) := max
1≤m≤N(h)

T1\
−T1

|W (s(τ);m,h)| dτ,

we have

(3.5)
1

2πi

N(h)∑
m=1

cm,h

T1\
−T1

W (s;m,h)
ts − (t− θt)s

s
dτ

= θM(h, t) +O(T1J0S0θ
2x1/2).

Summing up, from (3.1)–(3.5) we have

Σ(h, t, θ) = θM(h, t) + R1(h, t, θ)(3.6)

+
1

2πi

N(h)∑
m=1

cm,h

{−T1\
−T0

+
T0\
T1

}
W (s;m,h)

ts − (t− θt)s
s

dτ

= θM(h, t) + R1(h, t, θ) + R2(h, t, θ)

say, where M(h, t) is independent of θ. The ranges [−T0,−T1] and [T1, T0]
are dealt with by means of the following mean-value bound, which will be
proved in Section 7.

Lemma 6. There is a constant C0 > 0 with the following property. Let

(3.7) η = η(T ) := C0(log T )−2/3(log log T )−1/3

and

E := exp
{( L

log z1

)2

log log z1

}

and assume that z1 = z1(x) and δ = δ(x) are functions of x such that
δ ≥ (log log z1)2, log z1 ≥ L2/3, z2 = zδ1 = xo(1) and E = xo(1). Then for
each fixed α ∈ (0, 1/12) there exists β = β(α) with β ∈ (0, 1/42) with the
following property. Let

x1/4 < z ≤ x1/3−α and 3 ≤ T ≤ T0 = x5/6+β .

Then for t ∈ [x, 2x] and h ≤ 2 we have

2T\
T

|W (s(τ);m,h)|2 dτ � xE2h2
(z−η/61 + T−1/6).
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We obviously have

R2(h, t, θ)�
N(h)∑
m=1

|cm,h|
∣∣∣∣
T0\
T1

W (s;m,h)
ts − (t− θt)s

s
dτ

∣∣∣∣

and this means that

(3.8)
2x\
x

|R2(h, t, θ)|2 dt

� S2
0 max

1≤m≤N(h)

2x\
x

∣∣∣∣
T0\
T1

W (s;m,h)
ts − (t− θt)s

s
dτ

∣∣∣∣
2

dt.

The next lemma is needed to invert the order of integration.

Lemma 7. Let F (s) be a continuous complex-valued function. Then for
1 ≤ T1 ≤ T0 ≤ x and s = 1/2 + iτ we have

2x\
x

∣∣∣∣
T0\
T1

F (s)
ts − (t− θt)s

s
dτ

∣∣∣∣
2

dt� x2θ2L2 max
T1≤T≤T0

2T\
T

|F (s)|2 dτ.

A proof can be easily given by squaring out the integral, performing the
integration with respect to t first and then using the elementary inequality
|ab| ≤ |a|2 + |b|2 on the remaining double integral. A form of this result
appears as Lemma 2 in Harman [2] and elsewhere. We omit the details for
brevity.

We remark that LA �A E for any fixed A, that N7 � 22h+Ix � Ex
and that the definition of W easily implies J0 � T1x

1/2. The next lemma is
proved in Section 6.

Lemma 8. For large enough x we have

|S0| � exp
{
h
L

log z1
(logL)2

}
.

Hence L2S2
0 � E . We now choose k0 := 4 and set

M1(t) :=
2∑

k=1

k∑

h=0

α(h, k)M(h, t),

Rj(t, θ) :=
2∑

k=1

k∑

h=0

α(h, k)Rj(h, t, θ),

for j = 1, 2. Summing up, from Lemmas 4, 6–8, and from (3.2), (3.5)–(3.8)
we have

(3.9) π(t)− π(t− θt)− 1
3

∑

n∈I(t,θ)

a3(n) = θM1(t) + R1(t, θ) + R2(t, θ),
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where

R1(t, θ)� xET−1
0 + xθ2ET 2

1 ,(3.10)
2x\
x

|R2(t, θ)|2 dt� x3θ2E9(z−ξ/61 + T
−1/6
1 ),(3.11)

and ξ := η(T1). We finally choose our parameters as follows. First we choose
δ := (logL)2 so that δ ≥ max(logL, (log log z1)2) if z1 ≤ x, and z2 = xo(1)

provided that log z1 = o(L(logL)−2). Next, we choose T1 := E55 and observe
that T1 tends to infinity with x. The choice

z1 := exp{L8/9 logL}
implies

z−ξ1 �A E−A,
for any fixed A. We now see that the hypotheses of Lemma 6 are satisfied
and (3.9)–(3.11) finally yield

Lemma 9. Let α, β and z be as in Lemma 6. For t ∈ [x, 2x] there exist
functions M1(t) and R′(t, θ) such that

π(t)− π(t− θt)− 1
3

∑

n∈I(t,θ)

a3(n) = θM1(t) + R′(t, θ),

where M1(t) is independent of θ and

2x\
x

|R′(t, θ)|2 dt�A x
3θ2L−A,

for any fixed A, provided that

(3.12) x−5/6−β ≤ θ ≤ exp{−100L2/9}.

4. The case k = 3: reduction to mean-value estimates. The anal-
ysis of the case k = 3 is quite similar to the previous one, but we have to be
slightly more careful in order to obtain a good error term. We exploit the
fact that each Dirichlet polynomial we use is the product of only 3 factors,
as opposed to Section 3 where the number of factors was 2h+ I. Define

P (s) :=
∑

z≤p≤2x

1
ps

and P ∗(s) :=
∑

z3≤p≤2x

1
ps
,

where z3 is a new parameter satisfying z ≤ z3 ≤ x1/3. Note that if n ≤ 2x
then a3(n) is precisely the coefficient of n−s in P (s)3. Let b3(n) be the
coefficient of n−s in P ∗(s)3. We write P1(s) = P (s)−P ∗(s) so that a3(n)−
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b3(n) is the coefficient of n−s in

P (s)3 − P ∗(s)3 =
3∑

j=1

(
3
j

)
P1(s)jP ∗(s)3−j

if n ≤ t. We write

P1(s) =
∑

−E≤e≤0

Pe(s) and P ∗(s) =
∑

1≤e≤F
Pe(s),

where E and F are integers satisfying 2−E−1z3 ≤ z < 2−Ez3 and 2F−1z3 ≤
2x < 2F z3, and

Pe(s) :=
∑

2e−1z3≤p<2ez3
z≤p≤2x

1
ps
.

Since E,F � L, for some M � L3 and cm � 1 we have

P (s)3 − P ∗(s)3 =
M∑
m=1

cmP (s;m) where P (s;m) :=
3∏

j=1

Pej (s)

with e1 ≤ 0. Write Vj := 2ej−1z3 so that

P (s;m) =
∑

N8≤n≤N9

fm(n)
ns

,

say, where N8 :=
∏
j Vj and N9 := 23N8. As above, we discard those P (s;m)

having either N8 ≥ t or N9 ≤ t/2 and relabel the remaining ones so that for
some N ≤M we have

(4.1)
∑

n∈I(t,θ)

a3(n) =
∑

n∈I(t,θ)

b3(n) +
N∑
m=1

∑

n∈I(t,θ)

fm(n).

The same analysis of Section 3, with the bound |fm(n)| ≤ 3!, yields

∑

n∈I(t,θ)

fm(n) =
1

2πi

1/2+iT2\
1/2−iT2

P (s;m)
ts − (t− θt)s

s
ds+O

(
xL
T2

)
,

for T2 ≤ x. The ranges [−T2,−T3] and [T3, T2] are treated by means of the
following mean-value bound, which will be proved in Section 8.

Lemma 10. Let x19/60 ≤ z ≤ x1/3 and x5/6 ≤ T2 ≤ x11/12. Then, if
P (s;m) is as above with V3 ≥ V2 ≥ V1 ≥ z/2, we have

2T\
T

∣∣∣∣P
(

1
2

+ iτ ;m
)∣∣∣∣

2

dτ � xL62(z−η/61 + T−1/6 + (T2V
−5/2
3 )1/9)

uniformly for 3 ≤ T ≤ T2, where η is given by (3.7).
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We proceed precisely as in Section 3, using Lemma 7 again with F (s) =
P (s;m) and (3.3) for the range [−T3, T3], obtaining

(4.2)
∑

n∈I(t,θ)

fm(n) = θ
1

2πi

1/2+iT3\
1/2−iT3

P (s;m)ts ds+ R1(3, t, θ) + R2(3, t, θ),

where

R1(3, t, θ)� xLT−1
2 + xθ2T 2

3 ,(4.3)
2x\
x

|R2(3, t, θ)|2 dt� x3θ2(z−%/31 + T
−1/3
3 + (T2V

−5/2
3 )1/9)L62,(4.4)

and % = η(T2). Since V 2
3 ≥ xz−1

3 we have T2V
−5/2
3 � T2z

5/4
3 x−5/4. We

finally choose the parameters: Let ν be a sufficiently large positive con-
stant and set T2 := Lν max(θ−1, x5/6), T3 := Lν and also x19/60 ≤ z3 ≤
L−ν min(θ4/5x, x1/3). Then (4.1)–(4.4) imply

(4.5)
∑

n∈I(t,θ)

a3(n) =
∑

n∈I(t,θ)

b3(n) + θM3(t, z3) + R′′(t, θ, z3),

say, where M3(t, z3) is independent of θ and

(4.6)
2x\
x

|R′′(t, θ, z3)|2 dt� x3θ2L60−ν/18,

provided that θ satisfies (3.12). Now choose z := x19/60, so that the hy-
potheses of both Lemmas 6 and 10 are satisfied, and take ν := 1500. Hence,
from Lemma 9, (4.5) and (4.6) we deduce

Lemma 11. There exists a small positive constant λ such that if

x−5/6−λ ≤ θ ≤ exp{−100L2/9}
and

(4.7) x19/60 ≤ w ≤ L−1500 min(θ4/5x, x1/3)

then for t ∈ [x, 2x] there exists a function M(t, w) independent of θ such
that

(4.8) π(t)− π(t− θt)− 1
3

∑

n∈I(t,θ)

b3(n) = θM(t, w) + R(t, θ, w)

where
2x\
x

|R(t, θ, w)|2 dt� x3θ2L−20.
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It now remains to estimate the contribution of b3(n). First we remark
that

(4.9)
2x\
x

∣∣∣
∑

n∈I(t,θ)

b3(n)
∣∣∣
2
dt�

(
sup

t∈[x,2x]

∑

n∈I(t,θ)

b3(n)
) 2x\
x

∑

n∈I(t,θ)

b3(n) dt,

and that a simple argument based on the Brun–Titchmarsh inequality gives

2x\
x

∑

n∈I(t,θ)

b3(n) dt�
∑

x−θx<n≤2x

b3(n)
min(2x,n(1−θ)−1)\

max(x,n)

dt(4.10)

� θx
∑

n≤2x

b3(n)� θx
∑

w≤p,q≤2x/w2

∑

r≤2x/(pq)

1

� θx2

L
( ∑

w≤p≤2x/w2

1
p

)2

� θx2

L
(

log(xw−3)
L

)2

.

The same argument leading to (4.10) shows that the expected order of mag-
nitude for the supremum over t in (4.9) is θxL−1(log(xw−3)/L)2, and this
would imply the Theorem with the exponent 2 attached to the last factor re-
placed by 4. But we are unable to prove such a good bound. By Theorem 3.4
of Halberstam–Richert [1] we find

sup
t∈[x,2x]

∑

n∈I(t,θ)

b3(n)� θx

L ,

the lower bound in (4.7) ensuring that we save a log factor over the trivial
estimate. We collect these results in the form of

Lemma 12. Let θ and w be as in the statement of Lemma 11. Then
2x\
x

∣∣∣
∑

n∈I(t,θ)

b3(n)
∣∣∣
2
dt� θ2x3

L2

(
log(xw−3)
L

)2

.

5. Conclusion of the proof: the main term. Here we choose θ as
large as possible, i.e. θ = θ0 := exp(−100L2/9), and any w satisfying (4.7).
The Prime Number Theorem gives

π(t)− π(t− θ0t) =
θ0t

log t
+O

(
xθ2

0

L2

)
.

Hence (4.8) yields

θ0

(
M(t, w)− t

log t

)
= −1

3

∑

n∈I(t,θ0)

b3(n)−R(t, θ0, w) +O

(
xθ2

0

L2

)
,
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so that by Lemmas 11 and 12 we have

(5.1) θ2
0

2x\
x

(
M(t, w)− t

log t

)2

dt� x3θ2
0

L2

(
log(xw−3)
L

)2

+
x3θ2

0

L20 +
x3θ4

0

L4 .

We finally take
w := L−1500 min(θ4/5x, x1/3).

This choice of w implies that the left hand side of (5.1) is

� x3θ2
0

L2

(
ε(x) +

log log x
log x

)2

and the first estimate of Lemma 5 follows. The second part of Lemma 5 is
a consequence of Lemmas 11 and 12 and our choice of w. The proof of the
Theorem is therefore complete.

6. Proofs of (3.2) and Lemma 8. In order to prove (3.2) we first need
the bound ∑

m

|cm,h| · |em,h(n)| ≤ d3h(n).

By (2.6) this sum is bounded by the coefficient of n−s occurring in

ζ(s)2h
L∏

m=1

exp
(
h

m
Σm(s)

)
,

which, in its turn, is bounded by the one in

ζ(s)2h
∏

m≥1

exp
(
h

m
Σm(s)

)

and the latter is a partial product of ζ(s)h.
We recall that we chose N2 ≥ t/2 and that N1 = 2−2h−IN2 by (2.11).

Setting

N ′7 := min
1≤m≤N(h)

N1(m),

the error term with j = 0 in (3.1) is

(6.1) � 2I/2
∑

N ′7<n≤N7

d3h(n) min
(

1, T−1
0

∣∣∣∣log
t

n

∣∣∣∣
−1)

,

since each n counted in (3.1) is ≥ N1(m) ≥ N ′7 � x2−I . For the sake of
brevity, for r ∈ N let

Hr = {n ∈ (N ′7, N7] : rT−1
0 ≤ |log(t/n)| < (r + 1)T−1

0 }.
Observe that Hr 6= ∅ only for 0 ≤ r ≤ M , say, with M � IT0. Then the
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sum in (6.1) is

�
∑

n∈H0

d3h(n) +
M∑
r=1

∑

n∈Hr
T−1

0 d3h(n)
∣∣∣∣log

t

n

∣∣∣∣
−1

�
∑

n∈H0

d3h(n) +
M∑
r=1

∑

n∈Hr
T−1

0 d3h(n)(rT−1
0 )−1

�
M∑
r=0

1
r + 1

∑

n∈Hr
d3h(n).

Furthermore tT−1
0 exp(−rT−1

0 ) � |Hr| � tT−1
0 exp(rT−1

0 ) for all r ≤ M ,
and (3.2) follows using Lemma 3. The term with j = 1 in (3.1) is dealt with
in the same way.

For Lemma 8 we need the following elementary inequality which is easily
proved by induction: For any integer A ≥ 2 and real number B ≥ 3 we have

A∑
n=0

Bn

n!
≤ BA.

Arguing as in Section 5 of [4] we find, after a simple computation,

S0 ≤ (B + 1)h(C + 1)h exp
{
h

L/2∑
m=1

L

m
log

D + 1
m

+ h
L

2
log

2D
L

}

≤ exp
{
h
L

log z1
(logL)2

}
,

for large enough x, since B, C, D � L and z1 = xo(1), and Lemma 8 follows.

7. Proof of Lemma 6
Preliminaries. The proof is quite similar to the proof of Lemma 8 in [4].

For the sake of brevity we do not duplicate the whole argument, but merely
give the needed modifications. We say that a set S of points τn ∈ [T, 2T ]
is well spaced if |τm − τn| ≥ 1 for every τm, τn ∈ S with n 6= m. We write
s = 1/2+iτ and sn = 1/2+iτn throughout this section. We need an estimate
for

J1(T ) :=
2T\
T

|W (s)|2 dτ.

We first write W as the product of W1, W2 and W3, where

W1(s) :=
∏

Xi≥z1
Xbi(s)

I1∏

i=1

Z
(1)
di

(s), W2(s) :=
∏

Xi<z1

Xbi(s)
h∏

i=1

Yci(s),

W3(s) := W (s)(W1(s)W2(s))−1.
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We also set

x1 :=
∏

Xi≥z1
Xi

I1∏

i=1

Zi, x2 :=
∏

Xi<z1

Xi

h∏

i=1

Yi, x3 :=
L∏

m=2

Im∏

i=1

Zi,

so that x1x2x3 = N1 ≤ x. We observe that |Z(m)
di

(s)| ≤ Z
1−m/2
i for m ≥ 2

and large enough x, whence |W3(s)| ≤ 1.
The main tool to obtain mean-value estimates such as our Lemmas 6 and

10 is a combination of Montgomery’s mean-value bound (see Theorem 7.3
of [7]) and the Halász method. These are summarized in the following

Lemma 13. Let K(s) be the Dirichlet polynomial

K(s) =
∑

n≤K

k(n)
ns

,

where K ≥ 2 and |k(n)| ≤ 1 for every n ≤ K. Assume that |K(1/2+ iτn)| ≥
K for a set S of well-spaced points τn ∈ [T, 2T ]. Then, uniformly for g ∈ N,
we have

|S| � {K−2gKg + T min(K−2g,K−6gKg)} exp{6g2 log logK}(log TK)5.

This is (8.4) and the following is Lemma 19 of [4].

Lemma 14. For every factor K(s) of W1(s) we have

K(s)� K1/2(z−η1 + T−1)L2,

uniformly for τ ∈ [T, 2T ], where η = η(T ) is given by (3.7).

Actually, if x3 is large enough, x3 ≥ z1, say, we see that Lemma 6 follows
directly from Montgomery’s mean-value bound. In fact, we have

J1 � sup
τ∈[T,2T ]

|W3(s)|2
2T\
T

|W1(s)W2(s)|2 dτ � (T + x1x2)
∑

n≤x1x2

|cn|2
n

,

for suitable coefficients cn. The same argument leading to Lemma 13 above
implies that the last sum is � E2h2

, and the hypothesis on x3 ensures that
T + x1x2 � xz−1

1 , which is more than enough for Lemma 6. Hence we may
assume in what follows that x3 ≤ z1. We remark that from the definitions
above and (2.11) we have x2 = xo(1) and x1 = x1+o(1). We do not rule out
the possibility that W1 consists of a single factor Xbi . We use Lemma 14
in conjunction with Montgomery’s mean-value theorem if W1 has at least
one factor Xbi(s) or Z(1)

di
(s) with Xi ≤ x1/6−α or Zi ≤ x1/6−α, respectively.

In fact, setting K(s) = Xbi(s), K = Xi (resp. K(s) = Z
(1)
di

(s), K = Zi),
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W1(s) = K(s)W4(s), x4 = x1/K, in this case we have

J1 � sup
τ∈[T,2T ]

|W2(s)W3(s)|2
2T\
T

|W1(s)|2 dτ

� x2K(z−2η
1 + T−2)

2T\
T

|W4(s)|2 dτ,

and the last integral is estimated by means of Montgomery’s theorem, giving

J1 � x2K(z−2η
1 + T−2)(T + x4)

∑

n≤x4

|c′n|2
n

,

for suitable coefficients c′n. As above, the last sum is � E2h2
, and the hy-

pothesis on K ensures that Lemma 6 follows in this case, with β = α/2.
From now on we may assume that every factor K(s) of W1(s) has K ≥

x1/6−α. Thus we have I1 ≤ 12 and there exists a set S of � T well-spaced
points τn ∈ [T, 2T ] such that

J1 �
∑

τn∈S
|W (sn)|2.

The contribution to the sum of the points τn for which some factor of W1 is
≤ x−1 is easily seen to be � T . We discard these points, and from now on
assume that each factor of W1 is ≥ x−1. Then we split the range for each
factor of W1(s) into dyadic intervals [Dj , 2Dj) (if the factor is an Xbi(s)) or
[Ej , 2Ej) (if the factor is a Z(1)

di
(s)), where

x−1 � Dj = 2d � X
1/2
i and x−1 � Ej = 2e � Z

1/2
i

for some integers d and e. We observe that our hypothesis that each factor of
W1(s) is not too small ensures that the number of ranges (that is, the number
of values taken by d and e above) is ≤ C2L in each case, for some absolute
constant C2. For brevity we write L0 = 2C2L. We may divide the remaining
points into at most (L0/2)h+I1 classes S(D,E) where D = (D1, . . . , Dh)
and E = (E1, . . . , EI1), for which

(7.1) |Xbi(sn)| ∈ [Di, 2Di) and |Z(1)
di

(sn)| ∈ [Ei, 2Ei).

We write
P(D,E) :=

∏

i

Di

∏

i

Ei.

As above, we estimate W2(s) trivially and conclude that

Lemma 15. There exists a set S(D,E) of well-spaced points τn ∈ [T, 2T ]
satisfying (7.1) and such that

J1 � T + x2P(D,E)2|S(D,E)|Lh+I1
0 .
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We shall give upper bounds for |S| by means of Lemmas 13 and 14. Since
these bounds are essentially the same as in [4] we simply quote the results.

Lemma 16. If the hypotheses of Lemma 13 hold for K(s) = Xi(s) with
K = 2Xi ≥ T 1/2 then either

(7.2) K � K1/2T−1(logK)3

or

|S| � K−4T (logK)9.

This is Lemma 18 of [4].
If (7.2) holds, the trivial bound |S| � T and Lemmas 15 and 16 imply

Lemma 17. If Xi ≥ 1
2T

1/2 for some i then either

(7.3) |S| � K−4T (logK)9

or

(7.4) J1 � T + x1x2T
−1L3+h+I1

0 .

The second estimate is proved taking K = Di in (7.2) and observing that
the definition implies that P � |W1(sn)|. Since L3+h+I1

0 � E and x1x2 ≤ x,
(7.4) yields the conclusion of Lemma 6 and more.

Large factors of W1(s). The argument here is essentially the same as
in Section 8 of [4], and Lemma 6 follows precisely in the same way, since
the results in that section are bounds for |S|. We take a factor of W1(s),
K(s) = Xbi(s) or Z(1)

di
(s), and let K = 2Xi or 2Zi, K = Di or Ei accordingly.

We define σ by means of K = Kσ−1/2. The argument in Section 8 of [4] is
as follows: if ϕ is the maximum value of a σ occurring above then

(7.5) P(D,E)2 ≤
∏

i

D2ϕ−1
i

∏

i

E2ϕ−1
i ≤ x2ϕ−1

1 ,

and by Lemma 15 we have

(7.6) J1 � T + xx2ϕ−2
1 Lh+I1

0 |S(D,E)|.
If ϕ ≥ 5/6 then suitable choices of g in Lemma 13 yield

|S(D,E)| � (T 2−2ϕ + z4−4ϕ)L29E3/2,

and the upper bounds for T and z in the hypothesis of Lemma 6 together
with (7.5) and (7.6) yield

J1 � T + xx
(ϕ−1)/6
1 L29+h+I1

0 E3/2.

The upper bound for xϕ−1
1 which we need is provided by Lemma 14 and

the inequality K � x. In conclusion, since LA0 �A E , we see that Lemma 6
follows if ϕ ≥ 5/6.
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Conclusion of the proof of Lemma 6. In the remaining case, Heath-
Brown’s argument leads to the stronger inequality

(7.7) J1 � x1−γ

for some γ > 0. This follows from several bounds for |S| which are essen-
tially the same as in our case. We very briefly sketch the argument, without
entering into the details. First the hypotheses of Lemma 6 ensure that

J1 � T + xo(1)P2|S|.
By means of Lemma 13 we prove the following bounds: If K(s) = Xbi(s)
then

|S| �



T 12(1−σ)/5xo(1) in any case,
(T/Xi)4−4σxo(1) if T 2/5 ≤ Xi ≤ T 1/2,
T 2−2σxo(1) if Xi ≥ T 1/2,

and if K(s) = Z
(1)
di

(s) then

|S| � T 12(1−σ)/5xo(1).

Using these bounds we see that (7.7) holds provided that the following
conditions hold.

First case. If Xi ≥ x1/3+δ for some δ ≥ β and σ ≥ ϕ− ε we need to have

γ < min
(

1
6 − β, 1

18 − 1
3β − 2ε, 2

3δ − 2
3β − 2ε

)
.

Second case. If Xi ≥ x1/3+δ for some δ ≥ β and σ ≤ ϕ − ε we need to
have

γ < min
(

1
6 − β, 2

3ε− β
)
.

Third case. If Xi ≤ x1/3+δ for all i we need

γ < min
(

1
6 − β, 2

3ε− β − 4δε, 1
6α− 1

3β − 2ε
)
.

Now, we easily see that the choices

δ = 1
30 , β = 1

30α, ε = 1
15α

allow the choice γ = α/50 and satisfy the hypotheses of Lemma 6.

8. Proof of Lemma 10. This lemma is proved in a similar fashion to
Lemma 11 in [4] and we simply sketch the argument, with the necessary
changes. As in Section 10 of [4], let F = (F1, F2, F3) and S(F) be a set of
well-spaced points τn ∈ [T, 2T ] such that

Fi ≤ |Pei(1/2 + iτn)| < 2Fi for i = 1, 2, 3.

The same argument of Section 7 gives

(8.1)
2T\
T

|P (1/2 + iτ)|2 dτ � T2 + L3|S(F)|
3∏

i=1

F 2
i
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for some F. Fix an index i and set K = Fi = V
σ−1/2
i and K = 2Vi. We

remark that our choice of parameters implies that

(8.2) T
1/3
2 � K � T

1/2
2 .

We use Lemma 13 with several different values of g. First, if ϕ = maxσ ≥
5/6, we choose g = 2 and (8.2) implies that

|S(F)| � T 2−2ϕ
2 L29,

and Lemma 10 easily follows as in [4], on substituting into (8.1), since∏
F 2
i ≤

∏
V 2ϕ−1
i ≤ x2ϕ−1. An upper bound for xϕ−1 is provided by Lemma

14. In the other case, choose g = 3 to obtain

(8.3) |S(F)| � K6−6σL59

or g in such a way that T2K
−1/2 ≤ Kg ≤ T2K

1/2. In the latter case we have

(8.4) |S(F)| � (TK1/2)2−2σL59

since g ≤ 3 anyway. Since now σ ≤ 5/6, (8.3) and (8.4) imply

|S(F)| � K6−6σ(T2K
−5/2)1/3L59

when K ≤ T 2/5
2 and when K ≥ T 2/5

2 respectively. This means that

F 6
i |S(F)| � (Kσ−1/2)6K6−6σL59 = K3L59,

F 6
i |S(F)| � (Kσ−1/2)6K6−6σ(T2K

−5/2)1/3L59 = K3(T2K
−5/2)1/3L59.

We use the former for i = 1, 2, and the latter for i = 3, take their geometric
mean, and from (8.1) we obtain Lemma 10 in this case too, since F 2

i ≤
V 2σ−1
i ≤ Vi.

9. Some comments. The knowledgeable reader sees at once that we had
to make a different choice for the Dirichlet polynomials from Heath-Brown
[4]. Indeed, the choice therein leads to too large error terms in Lemma 4
since we have a larger z than Heath-Brown and a much smaller h. This is
due to the fact that we need z to be almost x1/3, since we have the same
problems he encounters in Section 9 when the product W has 6 factors,
but already with only 3 factors. The slight additional difficulty is more
than compensated by the fact that we only have to save a little over the
estimate given by Montgomery’s theorem, since our problem leads naturally
to estimating the mean-square of a Dirichlet polynomial.

We did not use Watt’s mean-value bound (Theorem 2 of [12]) in prov-
ing Lemma 6, because the hypothesis T ≥ K4 (in our notation) limits the
former’s usefulness in this problem to a subrange of the values of the pa-
rameters in Lemma 6. In particular, the case when some function Xbi(s)
or Zdi(s) has length K (= Xi or Zi resp.) bounded by x1/6−α can be more
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easily handled by means of Montgomery’s theorem alone. Compare the com-
ment following the proof of Proposition 2.2 in [12] with the hypothesis of
our Lemma 17. Even the more general Theorem 1 of Watt’s paper [11] has,
essentially, the same disadvantage.
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Università di Parma
via Massimo d’Azeglio 85/a
43100 Parma, Italy
E-mail: zaccagnini@prmat.math.unipr.it

Received on 26.3.1997
and in revised form on 24.6.1997 (3157)


