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1. Introduction. For a positive integer N , let Γ (N) denote the prin-
cipal congruence subgroup of level N of SL2(Z), namely,

Γ (N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ a ≡ d ≡ 1, b ≡ c ≡ 0 (mod N)
}
.

Let H be the upper complex half plane, and let

H∗ = H ∪ P1(Q) = H ∪Q ∪ {∞}.
Then the modular curve X(N) associated with the Riemann surface
Γ (N)\H∗ is defined over the cyclotomic field kN = Q(ζN ), where ζN =
e2πi/N is a primitive Nth root of unity (cf. Chap. 6 of Shimura [6]). There-
fore if the genus gN of the curve X(N) is not 0, equivalently N ≥ 6, then
the function field C(X(N)) of X(N) over the complex number field C has
two generators s and t such that

C(X(N)) = C(s, t), FN (s, t) = 0, FN (X,Y ) ∈ Z[ζN ][X,Y ],

where FN (X,Y ) is a polynomial of two variablesX and Y such that FN (s, Y )
= 0 is an irreducible equation of t over kN (s). Note that C(X(N)) can be
identified with the field A(N) of all the modular functions with respect
to Γ (N). Further, the function field kN (X(N)) of X(N) rational over kN
is identified with the field FN of all the modular functions of A(N) with
kN -rational Fourier coefficients at the cusp i∞. (See §6.2 of Shimura [6].)
Thus such generators s and t may be taken from the field FN .

The problem considered here is to give such two generators explicitly
using Klein forms. Moreover, we would like to know the properties of the
polynomial FN (X,Y ). For N prime, this problem was solved by Ishii [2] and
by the author and Ishii [1]. In [2], Ishii defined a family of modular functions
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Xr(τ) (r ∈ Z, r 6≡ 0 (mod N)) by

(1.1) Xr(τ) = Xr(τ,N) = e
(
− (r − 1)(N − 1)

4N

)N−1∏
s=0

Kr,s(τ)
K1,s(τ)

,

where Ku,v(τ) are Klein forms of level N (the functions Ku,v(τ) are modular
forms with respect to Γ (2N2) of weight −1) and e(ξ) = e2π

√−1ξ. See Kubert
and Lang [4] or Lang [5] for Klein forms. Then we know that Xr(τ) ∈ FN
(resp. Xr(τ)εN ∈ FN ) if r is odd (resp. if r is even), where εN is 1 or 2
according to whether N is odd or even. In fact, we see that the Fourier
expansion of the functions at the cusp i∞ has integral coefficients and its
leading coefficient is ±1. He showed that for every prime N = p > 6, two
modular functions X2(τ), X3(τ) generate Fp over kp (which implies that
X2(τ), X3(τ) generate A(p) over C) and he also showed that for p = 7, 11,
X3(τ) is integral over Z[X2(τ)] by constructing an equation satisfied with
X2(τ) and X3(τ). Afterward, in [1], the author and Ishii proved that for
every prime N = p > 6, X3(τ) is integral over Z[X2(τ)] and determined the
irreducible monic polynomial Fp(X,Y ) ∈ Z[X,Y ] of X3(τ) over Z[X2(τ)].
For a given prime p > 6, we can compute the polynomial Fp(X,Y ) using an
effective algorithm given in [1]. For example:

F7(X,Y ) = Y 3 −X3Y +X (g7 = 3),

F11(X,Y ) = Y 12 −X7Y 8 + 2X6Y 7 − 4X5Y 6 + 5X4Y 5 − 2X3Y 4

+ (X13 +X2)Y 3 − (3X12 +X)Y 2

+ 3X11Y −X10 (g11 = 26),

F13(X,Y ) = Y 20 +XY 18 −X2Y 16 −X9Y 15 + 2X3Y 14 + 2X10Y 13

− 5X4Y 12 − 7X11Y 11 −X5Y 10 + 14X12Y 9

+ (X19 + 6X6)Y 8 − 10X13Y 7 − (3X20 + 7X7)Y 6

+ (4X14 −X)Y 5 + (3X21 + 5X8)Y 4

− 4X15Y 3 −X22Y 2 + 2X16Y −X10 (g13 = 50).

Note that all these examples have very small integral coefficients! (Compare
with the modular equation for the modular curve X0(p) satisfied by the
elliptic modular functions j(τ) and j(pτ).)

The purpose of this paper is to extend the above results to all integer
N ≥ 6 except for the integral property of the function X3(τ) over Z[X2(τ)].
Our results are as follows:

Theorem 1. Let N be an integer ≥ 6. Then

(1.2) A(N) = C(X2(τ)εN , X3(τ)),

where εN is 1 or 2 according to whether N is odd or even. Further , the
function X3(τ) is integral over Q[X2(τ)εN ].
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We shall prove this theorem in Sections 3 and 4.

By this theorem, we know the existence of a polynomial FN (X,Y ) ∈
Q[X,Y ] such that FN (X2(τ)εN , Y ) is the irreducible monic polynomial of
X3(τ) over Q[X2(τ)εN ]. Since we can apply the method given in [1] to the
general case also, we can compute the polynomial FN (X,Y ). Here are some
examples:

F6(X,Y ) = Y 3 −X2 + 1 (g6 = 1),

F8(X,Y ) = Y 7 + 2Y 5 + Y 3 −X4Y 2 +X4 (g8 = 5),

F9(X,Y ) = Y 6 − (X5 −X2)Y 3 +X7 − 2X4 +X (g9 = 10),

F10(X,Y ) = Y 14 + 4X2Y 10 + 2Y 9 −X6Y 7 − 2X4Y 6

+ 3X2Y 5 + Y 4 +X8Y 3

− 3X6Y 2 + 3X4Y −X2 (g10 = 13),

F12(X,Y ) = Y 21 − 2Y 18 + (6X4 + 1)Y 15 − (X8 − 14X4)Y 12

− (7X8 +X4)Y 9 + (X12 + 6X8 + 9X4)Y 6

− (2X12 − 4X8 + 2X4)Y 3 +X12 − 2X8 +X4 (g12 = 25),

F14(X,Y ) = Y 38 − 10X2Y 33 + 3Y 31 + 8X6Y 30 − 7X4Y 28 −X10Y 27

− 17X2Y 26 + 26X8Y 25 + 3Y 24 + 106X6Y 23 − 10X12Y 22

+ 27X4Y 21 − 104X10Y 20 + (X16 − 5X2)Y 19 − 130X8Y 18

+ (31X14 + 1)Y 17 + 13X6Y 16 + 98X12Y 15

− (3X18 − 26X4)Y 14 + 15X10Y 13 − (26X16 −X2)Y 12

− 53X8Y 11 − 26X14Y 10 + (3X20 − 36X6)Y 9

+ 34X12Y 8 + (4X18 − 8X4)Y 7 + 13X10Y 6

− (X16 +X2)Y 5 − (X22 − 5X8)Y 4 − 10X14Y 3

+ 2X20Y 2 −X18 (g14 = 49),

F15(X,Y ) = Y 27 + 3X3Y 24 − (X11 +X)Y 21 + (X14 + 13X9 + 11X4)Y 18

− (9X17 + 22X12 − 7X7 +X2)Y 15 + (X25 + 15X20 − 9X15

+ 14X10 + 4X5)Y 12 − (2X28 + 4X23 − 6X18 + 19X13

− 21X8 + 2X3)Y 9 + (X31 +X21 − 4X16 +X11 +X)Y 6

− (2X29 − 6X24 + 4X19 + 4X14 − 6X9 + 2X4)Y 3

+X27 − 4X22 + 6X17 − 4X12 +X7 (g15 = 73).

Note that F6(X,Y ) = 0 and F7(X,Y ) = 0 are the same equations as Klein
has obtained from a different point of view (cf. Chap. 5 and 6 of III in
Klein–Fricke [3]). In view of these examples and the result in the case N
is prime, we think it is likely that X3(τ) is integral over Z[X2(τ)εN ] for all
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integer N ≥ 6. However, we are currently unable to prove this conjecture.
It seems impossible to prove it similar to the proof for primes in [1].

Acknowledgements. The author would like to express his hearty grat-
itude to Professor N. Ishii for encouraging him to consider this problem and
for the useful advice.

2. The properties of the functions Xr(τ). For an integer N ≥ 6
and an integer r 6≡ 0 (mod N), let Xr(τ) be the function defined by (1.1).
As mentioned in the introduction, by the fundamental properties K1–K4
of Klein forms in §1 of Kubert and Lang [4], we know that Xr(τ) ∈ A(N)
(resp. Xr(τ)εN ∈ A(N)) if r is odd (resp. if r is even). Further, we deduce
the following properties of Xr(τ).

Proposition 1. (1) Xr+kN (τ) = (−1)kXr(τ) for k ∈ Z.
(2) X−r(τ) = −Xr(τ).

(3) For A =
(
a b
c d

)
∈ SL2(Z), c ≡ 0 (mod N),

Xr(A(τ)) = e
(

(r2 − 1)ab
2N

)
(−1)(r−1)bXra(τ)

Xa(τ)
.

(4) In a neighborhood of the cusp i∞ of Γ (2N2), the function Xr(τ) has
an infinite product expansion:

Xr(τ) = q(r−1)(r+1−N)/(2N) 1− qr
1− q

∞∏
n=1

(1− qpn−r)(1− qpn+r)
(1− qpn−1)(1− qpn+1)

,

where q = e(τ) = e2π
√−1τ .

(5) Xr(τ) has neither poles nor zeros on H.

P r o o f. The statements (1)–(4) are obtained from K1–K4 in §1 of Kubert
and Lang [4] by elementary computation. The statement (5) is deduced from
the fact that Klein forms Kr,s(τ) have neither poles nor zeros on H.

In particular, the function Xr(τ) (or Xr(τ)εN ) ∈ A(N) has an x-expan-
sion at the cusp i∞ with integral coefficients and leading coefficient ±1,
where x = e(τ/N) is a local parameter at the cusp i∞.

Now, for a fixed N and r, let us denote by X(τ) the function Xr(τ) or
Xr(τ)εN according to whether r is odd or even. In the following, we shall
compute the order of X(τ) at the cusps of Γ (N).

Lemma 1. Let N be an integer ≥ 3. If N is odd , then put

S = {(u, v) | 1 ≤ u ≤ (N − 1)/2, 1 ≤ v ≤ N, (u, v,N) = 1}
∪ {(N, v) | 1 ≤ v ≤ (N − 1)/2, (v,N) = 1}.

If N is even, then put
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S = {(u, v) | 1 ≤ u ≤ N/2− 1, 1 ≤ v ≤ N, (u, v,N) = 1}
∪ {(N/2, v) | 1 ≤ v ≤ N/2, (v,N/2) = 1}
∪ {(N, v) | 1 ≤ v ≤ N/2, (v,N) = 1}.

For each (u, v) ∈ S, take a matrix B(u, v) ∈ SL2(Z) so that

B(u, v) ≡
(
u ∗
v ∗

)
(mod N).

Then the set {B(u, v)(i∞) | (u, v) ∈ S} of rational numbers is a system of
representatives of inequivalent cusps of Γ (N).

P r o o f. See Lemma 1.42 of Shimura [6].

For each (u, v) ∈ S, let P (u, v) denote the cusp of Γ (N) represented by
a rational number B(u, v)(i∞). Then the order νu,v(X(τ)) of the function
X(τ) at the cusp P (u, v) is defined to be the order of the x-expansion of
X(B(u, v)(τ)) at the cusp i∞. To state the order of the function X(τ) at
the cusp P (u, v), let us define a function αm(w) (w,m ∈ Z) by αm(w) =
〈w〉m(〈w〉m − m), where 〈w〉m denotes the smallest non-negative integer
congruent to w modulo m. Note that αm(w) is determined by w mod m,
and αm(w) = αm(−w).

Proposition 2. For any (u, v) ∈ S, let m = mv = GCD(v,N). Then

νu,v(X(τ)) =
{

1
2 (αm(ru)− αm(u)) if r is odd ,
(εN/2)(αm(ru)− αm(u)) if r is even.

P r o o f. Let r be odd. By K1 and K4 of Kubert and Lang [4], we have

X(B(u, v)(τ)) = c∗
N−1∏
s=0

Kru+sv,ru′+sv′(τ)/Ku+sv,u′+sv′(τ),

where c∗ is a non-zero constant. Therefore

νu,v(X(τ)) =
1

2N

N−1∑
s=0

(αN (ru+ sv)− αN (u+ sv)).

If GCD(v,N) = 1, then it is easy to see that
N−1∑
s=0

αN (ru+ sv) =
N−1∑
s=0

αN (u+ sv) = −N(N2 − 1)
6

.

Thus,

νu,v(X(τ)) = 0 =
1
2

(α1(ru)− α1(u))

in this case. Next consider the case m = GCD(v,N) 6= 1. Let v = km,
GCD(k,N) = 1. Then
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νu,v(X(τ)) =
1

2N

N−1∑
s=0

(αN (ru+ sv)− αN (u+ sv))

=
1

2N

N−1∑
s=0

(αN (ru+ sm)− αN (u+ sm))

=
m

2N

N/m−1∑
s=0

(αN (ru+ sm)− αN (u+ sm))

=
m

2N

N/m−1∑
s=0

{〈ru+ sm〉N (〈ru+ sm〉N −N)

− 〈u+ sm〉N (〈u+ sm〉N −N)}
since

∑N/m−1
s=0 〈w + sm〉N =

∑N/m−1
t=0 (〈w〉m + tm) for any w

=
m

2N

N/m−1∑
s=0

{(〈ru〉m + sm)(〈ru〉m + sm−N)

− (〈u〉m + sm)(〈u〉m + sm−N)}

=
m

2N

N/m−1∑
s=0

(αm(ru)− αm(u))

+m2(〈ru〉m − 〈u〉m)
N/m−1∑
s=0

(2s+ 1−N/m)

=
1
2

(αm(ru)− αm(u)).

In a similar way, we also obtain the desired formula for r even.

Corollary 1. Let (u, v) ∈ S. The functions X(τ) have poles only at
the cusps P (u, v) of Γ (N) such that

m = GCD(v,N) > 3, GCD(u,m) = 1 and 0 < u < N/2.

Further , the order of the functions X2(τ)εN and X3(τ) at the cusps P (u, v)
are given by

νu,v(X2(τ)εN ) = νu,v(X2(τ)εN ) =
εN
2

(3u2 −mu),

νu,v(X3(τ)) = νu,v(X3(τ)) =
{

4u2 −mu if u < m/3,
(2u−m)2 if u ≥ m/3,

where w is defined by

w =
{ 〈w〉m if 〈w〉m < m/2,
m− 〈w〉m otherwise.

P r o o f. By the property of αm and straightforward calculation.
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Corollary 2. (1) X3(τ) has poles only at the points where X2(τ)εN has
poles.

(2) If N is odd , then X3(τ) has a zero at each point where X2(τ)εN has
a zero.

(3) If 3 -N , then X2(τ)εN has a pole or a zero at each point where X3(τ)
has a zero.

3. The generators of A(N). In this section, we prove (1.2). In the
following, for a modular function f(τ), we write simply f instead of f(τ)
if there is no danger of confusion. Let N be an integer ≥ 6. Since A(N)
is an algebraic function field of dimension one over C, if f ∈ A(N) is a
non-constant function, then A(N) is finite over the subfield C(f) of A(N).
In this case, we denote by d(f) the degree of A(N) over C(f). Our proof is
based on the next lemma.

Lemma 2. Let L be a subfield of A(N) over C such that [A(N) : L] <∞.
Let f1, . . . , fn be non-constant functions of L. If GCD(d(f1), . . . , d(fn)) = 1,
then L = A(N).

P r o o f. The degree [A(N) : L] is a divisor of d(fi) = [A(N) : C(fi)] for
each i. Hence, GCD(d(f1), . . . , d(fn)) = 1 implies [A(N) : L] = 1.

First, we assume N is odd. So εN = 1 in this case. Let L be the subfield
of A(N) generated over C by X2(τ) and X3(τ). By Lemma 2, to prove
L = A(N), it suffices to show that there exist two pairs of positive integers
(i1, j1) and (i2, j2) such that

GCD(d(X2), d(Xi1
2 +Xj1

3 ), d(Xi2
2 +Xj2

3 )) = 1.

It is well known that if f ∈ A(N) is a non-constant function, then

d(f) = deg(f)∞ = (the total degree of poles of f).

(See for example Proposition 2.11 of Shimura [6].) Therefore, from the prop-
erty of αm(w) and Corollary 1 of Proposition 2, we have

d(X2) = −
∑

m|N
m>3

ϕ

(
N

m

)
N

m

∑

0<u<m/3
(u,m)=1

3u2 −mu
2

,

where ϕ(n) is Euler’s function.
Let us compute d(Xi

2 + Xj
3) for a pair of positive integers i and j. We

consider (u, v) ∈ S such that the function Xi
2 + Xj

3 has a pole at the cusp
P (u, v). By Corollary 1 of Proposition 2, the function Xi

2 + Xj
3 has poles

only at the cusps P (u, v), (u, v) ∈ S, such that mv = GCD(v,N) > 3 and
0 < u < mv/3. Let

S′ = {(u, v) ∈ S | mv > 3, 0 < u < mv/3, (u,mv) = 1}.
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For (u, v) ∈ S′, we have by Corollary 1 of Proposition 2,

νu,v(X2) =
3u2 −mvu

2
, νu,v(X3) = 4u2 −mvu.

Now we assume that i and j satisfy

(3.1) i < 2j,
(2j − i)N

8j − 3i
6∈ Z and

[
(2j − i)N

8j − 3i

]
= 1,

where [x] denotes the greatest integer ≤ x. (In fact, there exist i and j
satisfying the assumptions (3.1) for all N ≥ 7.) Then, for a fixed v of (u, v) ∈
S′, we know the following:

(i) If mv < N (i.e., v 6= N), then

νu,v(Xi
2) < νu,v(X

j
3)⇔ 0 < u < mv/3, (u,mv) = 1.

(ii) If mv = N (i.e., v = N), then

νu,v(Xi
2) < νu,v(X

j
3)⇔ 1 < u < mv/3, (u,mv) = 1,

νu,v(Xi
2) > νu,v(X

j
3)⇔ u = 1.

Further, we see that νu,v(Xi
2) < 0 and νu,v(Xi

2) 6= νu,v(X
j
3) for any (u, v) ∈

S′. Thus we get

d(Xi
2 +Xj

3) = −
∑

m|N
m>3

ϕ

(
N

m

)
N

m

∑

0<u<m/3
(u,m)=1

min
{

3u2 −mu
2

i, (4u2 −mu)j
}

= −
∑

m|N
m>3

ϕ

(
N

m

)
N

m

∑

0<u<m/3
(u,m)=1

3u2 −mu
2

i+
3−N

2
i− (4−N)j

= id(X2) +
1
2
{2(N − 4)j − (N − 3)i}.

Now, for each N ≥ 7, we take two pairs (i, j) of positive integers so that

(i1, j1) =
(
N − 3,

N − 1
2

)
and (i2, j2) =

(
N − 5,

N − 3
2

)
.

They satisfy the above assumptions (3.1). In fact, take (i1, j1) for instance.
Then we easily see that i1 < 2j1,

(2j1 − i1)N
8j1 − 3i1

=
2N
N + 5

= 1 +
N − 5
N + 5

6∈ Z,

and so
[ (2j1−i1)N

8j1−3i1

]
= 1. Therefore we obtain

d(Xi1
2 +Xj1

3 ) = i1d(X2) + (N − 5)/2,

d(Xi2
2 +Xj2

3 ) = i2d(X2) + (N − 3)/2.
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Consequently, we have

GCD(d(X2), d(Xi1
2 +Xj1

3 ), d(Xi2
2 +Xj2

3 ))

= (d(X2), (N − 5)/2, (N − 3)/2) = 1.

This shows (1.2) for odd integer N .
Next we assume N is even and ≥ 6. We shall prove

A(N) = C(X2(τ)2, X3(τ)2)

instead of proving (1.2). In this case also, it suffices to show that there exist
two pairs of positive integers (i1, j1) and (i2, j2) such that

(3.2) GCD(d(X2
2 ), d(X2i1

2 +X2j1
3 ), d(X2i2

2 +X2j2
3 )) = 1.

By a similar argument, if i and j satisfy the assumptions (3.1), we deduce

d(X2i
2 +X2j

3 ) = id(X2
2 ) + 2(N − 4)j − (N − 3)i.

Now take (i, j) so that

(i1, j1) =
(
N − 2

2
,
N

4

)
, (i2, j2) =

(
N − 4,

N − 2
2

)
if N ≡ 0 (mod 4),

(i1, j1) =
(
N − 4

2
,
N − 2

4

)
, (i2, j2) =

(
N − 2,

N

2

)
if N ≡ 2 (mod 4).

For those (i, j), it is easy to show (3.2). This completes the proof of (1.2).

4. The equations for A(N). In this section we prove the last part
of Theorem 1. Put d2 = d(XεN

2 ), d3 = d(X3). Since the degree A(N) =
C(XεN

2 , X3) over C(XεN
2 ) is d2, the function X3 has an irreducible equa-

tion ΨN (Y ) = 0 of degree d2 over C(XεN
2 ). Let FN be the subfield of A(N)

generated by all modular functions of A(N) with kN -rational Fourier coef-
ficients at the cusp i∞. Since FN and C are linearly disjoint over kN and
A(N) = CFN (cf. §6.2 of Shimura [6]), the result A(N) = C(XεN

2 , X3) shows
that FN is generated over kN by XεN

2 and X3. In particular, we can take a
polynomial ΨN (Y ) in kN (XεN

2 )[Y ]. After multiplying a suitable element of
kN [XεN

2 ], we can write

ΨN (Y ) = FN (XεN
2 , Y ),

where

FN (X,Y ) = Φd2(X)Y d2 + Φd2−1(X)Y d2−1 + . . .+ Φ1(X)Y + Φ0(X)

∈ kN [X,Y ],

Φj(X) ∈ kN [X] for all j, Φd2(X) is monic, and Φd2(X), . . . , Φ1(X) and
Φ0(X) have no common factors. We also write

FN (X,Y ) =
∑

i,j

Ci,jX
iY j , Ci,j ∈ kN .
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In §3 of [1], we studied various properties of Φk(X) and Ci,j for the case N
is prime. In that paper, Lemmas 2–5 were deduced from the behavior of the
functions X2(τ) and X3(τ) at the cusps (e.g. Proposition 2 of [1]). Thus a
similar argument can be applied to the general cases. By Corollary 2 and
Proposition 1(3) of this paper, we deduce the following:

Lemma 3. (1) Φd2(X) = 1.
(2) max0≤k≤d2 degΦk(X) = d3.

(3) If 3 -N , then Φ0(X) is monomial.
(4) If N is odd , then Φk(X) is divisible by X for all k < d2.
(5) If N is odd , then 3i+ 8j 6≡ 8d2 (mod N) implies that Ci,j = 0.
(6) If N is even, then 3i+ 4j 6≡ 4d2 (mod N) implies that Ci,j = 0.

By using Lemma 3(1), we can prove a result corresponding to Lemma 1
of [1].

Lemma 4. Let N be an integer ≥ 6. Then FN (X,Y ) ∈ Q[X,Y ].

P r o o f. From Lemma 3(1), FN (X,Y ) ∈ kN [X,Y ] is the minimal polyno-
mial of X3 over C(XεN

2 ). Consider the constant function FN (XεN
2 , X3) ≡ 0.

We use the Galois theory of FN/Q(j) (cf. §6.2 of Shimura [6]). Let f(τ) ∈ FN
and f =

∑
cnx

n be its Fourier expansion. Then any element σ ∈ Gal(kN/Q)
can be extended to an element of Gal(FN/Q(j)) by the action fσ =

∑
cσnx

n.
Since the Fourier expansions of XεN

2 and X3 at the cusp i∞ have integral
coefficients, we have

0 = FN (XεN
2 , X3)σ = Xd2

3 +
∑

Cσi,j(X
εN
2 )iXj

3 .

Because the polynomial Y d2 +
∑
Cσi,jX

iY j is again the minimal polynomial
of X3 over C(XεN

2 ), we have Cσi,j = Ci,j for all σ ∈ Gal(kN/Q). It follows
that Ci,j ∈ Q.

This proves the last part of Theorem 1.

Finally, let us explain how to compute the coefficients Ci,j effectively.
Since a non-constant function of A(N) necessarily has poles and since
FN (X2(τ)εN , X3(τ)) = 0, we get a finite system of linear equations in Ci,j
by replacing X2(τ)εN and X3(τ) with their x-expansions at the cusps where
XεN

2 or X3 has poles and by letting the coefficients of non-positive pow-
ers of x be equal to 0. By solving these linear equations we will be able
to determine all Ci,j in principle. But, in general, the x-expansions are in
Z[ζN ]((x)). Therefore, to calculate the coefficients (especially when we use a
computer) this method is not so effective. Let us consider the x-expansions
at the cusps P (u,N). At these cusps, by Proposition 1(3), the x-expansions
are essentially in Z((x)). Furthermore, by Lemma 3(5), (6), the elements of
the coefficient matrix of the system of linear equations can be taken in Z.
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(See the proof of Lemma 7 in [1].) For some N , making sufficiently many lin-
ear equations obtained by equating the coefficients of powers of x, including
positive powers, we are able to determine all the coefficients of FN (X,Y ).
See the examples given in Section 1. The calculations were performed by
means of “Mathematica” on a Unix machine.
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