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On the height constant for curves of genus two

by

Michael Stoll (Düsseldorf)

1. Introduction. In many contexts, it is important to bound the naive
height of a point on an abelian variety in terms of its canonical height. There
is a quite extensive literature on this subject concerning elliptic curves (see
for example [5] for a recent result), but general results for Jacobians of curves
of higher genus are sparse. This paper aims at filling this gap for Jacobians
of curves of genus two, building on work done by Victor Flynn and Nigel
Smart.

The motivation for this work arose from discussions with Bjorn Poonen
on the design of a program for computing the rational torsion subgroup
of such a Jacobian. One of the more straightforward approaches requires
a bound on the (naive) height of a torsion point. A rough sketch of the
algorithm is given at the end of Section 8, and a detailed description can be
found in Section 11.

Let hK be the naive logarithmic height function on the Jacobian J in-
duced from a certain embedding of its Kummer surface K into P3, and let ĥ
denote the corresponding canonical height on J . Assume for simplicity that
Q is our base field. Then for every P ∈ J(Q), we have

hK(P ) ≤ ĥ(P ) +
1
3

∑
v

γv

(cf. [3]), where v runs through the places of Q and the γv are certain local
height constants, which measure locally how far hK(2P ) is from 4hK(P ).
The main result of this paper is that∑

v finite

γv ≤ log |24 disc(F )|,

where F is the polynomial used to define the curve. Together with some
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estimate on γ∞, which can also be got by our method, this yields an upper
bound on hK − ĥ. We remark that it is (obviously!) not necessary to factor
the discriminant to obtain this bound or even a slightly better one taking
into account the content and the primitive part of F (cf. Cor. 8.1). (Note
that γv = log c−1

v in the notation of this paper. The notation in [3] is c(v)
1

instead of γv.)
The following section introduces the basic notions. The three sections

after that use some elementary representation theory to describe the action
of the 2-torsion subgroup of J on the Kummer surface and its ambient
projective space. In hindsight, this is mainly motivational, since the explicit
formulas one can deduce (which are given later in Section 10) are generically
valid and can be checked without referring to the theory. The key results
are Lemmas 4.1 and 5.2, which immediately imply the main theorem given
in Section 6. The following section discusses some refinements of the bounds
which can be obtained by using the formulas explicitly. It also gives a method
for finding a bound on γ∞. Section 8 states the application to curves over
number fields. A discussion relating our work to earlier work by Victor Flynn
follows, and after a section giving the relevant formulas, a description of the
algorithm for determining the rational torsion subgroup closes the paper.
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on various versions of this paper.

The Max-Planck-Institut für Mathematik in Bonn has provided me with
the opportunity to concentrate on my research during a six months’ stay in
1998.

The computations leading to the formulas in Section 10 have been done
using the Magma system for Computer Algebra [7].

2. Basics. Let k be a non-archimedean local field of characteristic dif-
ferent from 2 with (multiplicative) absolute value | · | (in Section 8, we will
also consider number fields). Let O be the integers of k, let F ∈ O[X,Z] be
a homogeneous polynomial of degree 6 without multiple factors and define
f(X) = F (X, 1). Then the affine equation

(2.1) Y 2 = f(X)

defines a curve of genus two; let C be its smooth projective model over k.
We let J denote the Jacobian of C, which is an abelian surface defined over
k. Its quotient by the negation map P 7→ −P is the associated Kummer
surface K; it can be embedded as a hypersurface into P3. For the basic facts
regarding K, see Chapter 3 in [1]. We will use the embedding of K into P3
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as given there. Since addition of a 2-torsion point and multiplication by 2
both commute with negation, they descend to give morphisms on K.

The duplication map, δ, on K is given by four homogeneous polynomials
δ1, δ2, δ3, δ4 ∈ O[x1, x2, x3, x4] of degree 4 in the homogeneous coordinates
x1, x2, x3, x4. We will denote by δ0 the equation of K, which is again a
homogeneous polynomial of degree 4; the reason for doing so will soon be-
come apparent. Explicit expressions for these polynomials can be obtained
from [6]. The Kummer surface equation δ0 is also given in [1] and [3].

Now the height constant of C (over k) is defined to be

(2.2) c = min
x=(x1:x2:x3:x4)∈K(k)

max{|δ1(x)|, |δ2(x)|, |δ3(x)|, |δ4(x)|}
(max{|x1|, |x2|, |x3|, |x4|})4 .

Recall that we are using a specific embedding of K into P3. In general, the
height constant will depend on the embedding chosen.

3. The first representation. For the elementary representation theory
of finite groups needed in what follows, we refer to the first two chapters
of [4].

In this and the next two sections, we will assume that our base field k has
characteristic zero. This is necessary to make the representation theory work.
Note, however, that the explicit formulas given in Section 10 are completely
generic. Since the main results only depend on these formulas, they also
hold in positive (odd) characteristic.

For the following, we assume that F splits completely over k. To satisfy
this assumption, we can simply replace k with the splitting field of F over
k; this will not affect the result. Write

F =
6∏

j=1

(βjX − αjZ)

with αj , βj ∈ O.
The non-trivial 2-torsion points of J are parametrised by 2-subsets {i, j}

of {1, . . . , 6}, corresponding to divisors of F of degree two (see [1, p. 3]).
The addition of the 2-torsion point t{i,j} on K is given by a projective
linear transformation of the ambient P3. In [1, p. 21], to each t = t{i,j}, a
(4× 4)-matrix Mt = M{i,j} with entries in O is associated that defines this
transformation. Furthermore, we have M2

{i,j} = r(i, j)I (I being the identity
matrix), where

r(i, j) =
∏

m∈{i,j}

∏

l 6∈{i,j}
(βlαm − βmαl)

is the resultant of the factor of F corresponding to {i, j} and the remaining
factor. We also define M0 = I. Let r(t) = r(i, j) if t = t{i,j} and r(0) = 1.
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We have the relation

MtMt′ = c(t, t′)Mt+t′ = e(t, t′)Mt′Mt

(with c(t, t) = r(t)), where e denotes the Weil pairing on J [2], which is given
by

e(t{i,j}, t{k,m}) = (−1)#{i,j}∩{k,m},
and c(t, t′) ∈ O is given explicitly in [1, p. 22].

So we see that T = J [2] embeds into PGL(4, k), but this does not lift
to an embedding into GL(4, k), where k is some algebraic closure of k. We
can, however, consider the subgroup

T̃ = {%Mt | t ∈ T, %4 = r(t)−2} ⊂ GL(4, k),

which is a four-fold cover of T . The kernel of the map T̃ → T consists of the
matrices ζI, where ζ is a fourth root of unity, and coincides with the centre
of T̃ . The group T̃ acts on k[x1, x2, x3, x4], and ζI acts as multiplication by
ζ on the vector space V of linear polynomials. Let χ be the character of the
representation of T̃ on V . Then χ(ζI) = 4ζ, and since every element not in
the centre is conjugate to its negative, χ(t̃) = 0 for all other elements t̃ ∈ T̃ .
This implies that this representation is irreducible.

For a subring R of k, we let VR be the R-submodule of R[x1, x2, x3, x4]
freely generated by x1, x2, x3, x4.

4. The second representation. There is a group T ′ between T̃ and T .
It consists of pairs (ε, t) with ε = ±1 and t ∈ T , with multiplication given
by

(ε, t)(ε′, t′) = (εε′e(t, t′), t+ t′).
The map T ′ → T is projection onto the second component, and the map
T̃ → T ′ is given by %Mt 7→ (%2r(t), t). The group T ′ is elementary abelian
of order 25, so there are sections T → T ′, but there is no canonical such
section. The preimage in T̃ of the image of such a section is a so-called
extraspecial 2-group of order 25; the representation on V is its (irreducible)
4-dimensional spin representation.

Now look at the representation of T̃ on the space of homogeneous polyno-
mials of degree two, which is Sym2 V . By the usual formulas, for its character
ψ we get

ψ(ζI) = 10ζ2 and ψ(%Mt) = 2%2r(t) for t 6= 0.

This shows that the representation factors through T ′, and on T ′, we have

ψ(ε, 0) = 10ε and ψ(ε, t) = 2ε for t 6= 0.

Since T ′ is abelian, the representation has to split into one-dimensional
irreducibles. Every partition of {1, . . . , 6} into two sets with three elements
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(there are 10 such partitions—the ordering of the two sets is irrelevant)
determines a character on T ′ as follows. Let S and S′ be the two sets. Then

χS,S′(ε, 0) = ε and χS,S′(ε, t{i,j}) =
{−ε if {i, j} ⊂ S or {i, j} ⊂ S′,
ε otherwise.

Since ψ =
∑
{S,S′} χS,S′ , we see that

Sym2 Vk =
⊕

{S,S′}
k · yS,S′

with yS,S′ ∈ k[x1, x2, x3, x4] suitable homogeneous polynomials of degree 2
such that T ′ acts on yS,S′ via χS,S′ . (Everything is defined over k, since the
characters have values in k.) We can choose the yS,S′ to have coefficients in
O with one of them being a unit. Formula 10.1 gives an explicit expression.
For a given partition {S, S′}, we will take yS,S′ to be the specific polynomial
given there. Let

∆ =
∏

i<j

(βjαi − βiαj).

(Note that ∆ is a square root of the discriminant of F .) The action of
(ε, t) ∈ T ′ on Sym2 V is given by that of %Mt, where %2 = ε/r(t). Since a
scalar matrix αI ∈ GL(4, k) acts as multiplication by α2 on Sym2 V , the
action of (ε, t) on Sym2 V is ε/r(t) times the action of Mt. Since r(t) divides
∆, and since Mt has integral entries, the projection operator

π : Sym2 V → Sym2 V, v 7→ 1
#T ′

∑

σ∈T ′
χS,S′(σ)σ · v,

onto the χS,S′-eigenspace k · yS,S′ maps 25∆ Sym2 VO into O · yS,S′ . Writing
the identity homomorphism as the sum of all the 10 projection operators
corresponding to the various partitions {S, S′}, we see that 25∆ Sym2 VO is
contained in the O-module generated by the yS,S′ . (If we use a section
T → T ′, we can reduce the factor 25 to 24.) If we do the calculations
explicitly, we get the following slightly better result.

Lemma 4.1. ⊕

{S,S′}
O · yS,S′ ⊃ 22∆Sym2 VO.

P r o o f. This follows from formulas 10.3 and 10.4.

5. The third representation. The next step is to consider the rep-
resentation of T̃ or T ′ on Sym4 V , the homogeneous polynomials of degree
four. Let ϕ be its character. Then by the usual formulas, we get (first on T̃ ,
then on T ′)

ϕ(ε, 0) = 35 and ϕ(ε, t) = 3 for t 6= 0.
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We see that this representation actually is a representation of T itself and
that it contains five copies of the trivial representation and two copies of
each of the 15 non-trivial irreducible representations. We have the following
result.

Lemma 5.1. The elements δ0, δ1, δ2, δ3, δ4 ∈ Sym4 Vk give a basis of the
subspace of T -invariant elements.

P r o o f. This is because the Kummer surface is invariant under T and so
is the duplication map. One can also check the claim directly.

Now, since the action of T ′ on yS,S′ is given by a quadratic character,
y2
S,S′ ∈ Sym4 V is invariant under T . This means that we can express y2

S,S′

in terms of the δj . Doing this explicitly yields the following.

Lemma 5.2. For every partition {S, S′}, we have y2
S,S′ ∈

⊕4
j=0O · δj.

P r o o f. This follows from formula 10.2.

If we look at the product of two different yS,S′ , then we will get an ele-
ment in some non-trivial eigenspace of Sym4 Vk. For example (and without
loss of generality) if we take y = y{1,3,4},{2,5,6} and y′ = y{1,5,6},{2,3,4},
then t ∈ T acts on yy′ as multiplication by e(t, t{1,2}). The set {1, 2}
showing up here consists of the two elements that have to be interchanged
in order to transform one partition into the other. There are two other
such products in this eigenspace, namely y{1,3,5},{2,4,6}y{1,4,6},{2,3,5} and
y{1,3,6},{2,4,5}y{1,4,5},{2,3,6}. Since the eigenspace is only two-dimensional,
there has to be a linear relation between these three products. This relation
is given in formula 10.5.

Together, formulas 10.2–10.5 give a method to compute preimages under
δ on the Kummer surface in the following way. First find the y2

S,S′ from the
values of the δj via 10.2. The non-zero values of the y2

S,S′ must all lie in the
same coset of k× modulo squares. Otherwise, there is no preimage in K(k).
By multiplying through with a suitable factor, we may assume that they
are squares. Then extract square roots to get at possible values for the yS,S′
themselves. Now adjust the signs in such a way that relations 10.5 hold. Pick
some i such that x2

i as given by 10.3 is non-zero. Then (x1 : x2 : x3 : x4) is
determined by (x1xi : x2xi : x3xi : x4xi) as given in 10.3 and 10.4.

Remark. One can take this game a step further and look at Sym8 V , the
homogeneous polynomials of degree 8. This splits into 15 copies of the trivial
representation and 10 copies of each of the non-trivial irreducible represen-
tations. If we split Sym4 Vk = W ⊕W ′, where W is the invariant part, then
Sym8 Vk = Sym2W ⊕ (W ′ ⊗kW ). In particular, the ideal generated by the
δj contains the eighth power of the irrelevant ideal. It would be interesting
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to find the “best” constant A ∈ O such that

A · (x1, x2, x3, x4)8 ⊂ (δ0, δ1, δ2, δ3, δ4)

as ideals of O[x1, x2, x3, x4]. I have not yet been able to do the necessary
computations because of the complexity of the expressions involved.

As noted at the beginning of Section 3, Lemmas 4.1 and 5.2 remain true
over local fields of odd positive characteristic, since they only depend on the
explicit formulas of Section 10.

6. The main result. It is now an easy matter to prove our main result.

Theorem 6.1. Let k be a non-archimedean local field of characteristic
different from 2, with absolute value | · |. Define the height constant c by

c = min
(x1:x2:x3:x4)∈K(k)

max{|δj(x1, x2, x3, x4)| | j = 1, 2, 3, 4}
(max{|x1|, |x2|, |x3|, |x4|})4 .

Then

c ≥ |24 disc(F )|.
P r o o f. Let (x1 : x2 : x3 : x4) ∈ K(k) be some point. Consider the yS,S′

evaluated at this set of homogeneous coordinates. By Lemma 5.2, we have

|yS,S′(x1, x2, x3, x4)|2 ≤ max
1≤j≤4

|δj(x1, x2, x3, x4)|

(note that δ0(x1, x2, x3, x4) = 0 since the point is on K). On the other hand,
by Lemma 4.1, for each j ∈ {1, 2, 3, 4}, we also have

|22∆| · |xj |2 ≤ max
{S,S′}

|yS,S′(x1, x2, x3, x4)|.

So (with ∆2 = disc(F )) we get

|24 disc(F )| · (max{|x1|, |x2|, |x3|, |x4|})4 ≤ max
1≤j≤4

|δj(x1, x2, x3, x4)|,

which proves the theorem.

Remark. The result of the theorem is unchanged when we replace k
with a finite extension and extend the absolute value of k to that extension.
Hence the bound on c is valid on K(k).

Remark. (See also [3, Lemma 3].) If we define

c′ = max
(x1:x2:x3:x4)∈K(k)

max{|δj(x1, x2, x3, x4)| | j = 1, 2, 3, 4}
(max{|x1|, |x2|, |x3|, |x4|})4 ,

then c′ = 1. We have c′ ≤ 1, since the δj have integral coefficients, and
also c′ ≥ 1, since for (x1, x2, x3, x4) = (0, 0, 0, 1), we get (δ1, δ2, δ3, δ4) =
(0, 0, 0, 1).
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7. Refinements. If k is archimedean, we can still use our setup to find
a bound on the height constant. In this case, we need to find the coefficients
in the relations of Lemmas 4.1 and 5.2 explicitly and then use the usual
archimedean triangle inequality.

To be more specific, for i ∈ {1, 2, 3, 4} write

x2
i =

∑

{S,S′}
ai,{S,S′}yS,S′

and for a partition {S, S′},

y2
S,S′ =

4∑

j=0

b{S,S′},jδj .

We take (archimedean) absolute values to obtain

|xi|2 ≤
∑

{S,S′}
|ai,{S,S′}| · |yS,S′ | and |yS,S′ |2 ≤

4∑

j=0

|b{S,S′},j | · |δj |.

This implies

max
i
|xi|4 ≤ max

i

( ∑

{S,S′}
|ai,{S,S′}|

√
4∑

j=1

|b{S,S′},j |
)2

max
j
|δj |.

After dividing by maxj |δj | and taking the maximum over the left-hand side,
we get

(7.1)
1
c
≤ max

i

( ∑

{S,S′}
|ai,{S,S′}|

√
4∑

j=1

|b{S,S′},j |
)2

.

The remaining parts of this section deal with non-archimedean fields.
For such a field, we similarly have

(7.2)
1
c
≤ max

i
max
{S,S′}

|ai,{S,S′}|2,

since we can use the non-archimedean triangle inequality and the fact that
b{S,S′},4 = 1 and |b{S,S′},j | ≤ 1 for all j. This can be used to obtain refined
bounds, using the explicit formulas given in Section 10.

A first refinement of the bound in Theorem 6.1 is

(7.3) c ≥ |2|4 min
{S,S′}

|R(S, S′)2|,

where

R(S, S′) =
∏

i∈S

∏

j∈S′
(αiβj − αjβi)
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is the resultant of the two factors of F corresponding to S and S′. In order
to find this improved bound in practice for some F with (rational) integral
coefficients, say, one can proceed as follows. First find the (complex) roots of
f to sufficiently high precision, then compute the R(S, S′) numerically and
find the polynomial

∏
{S,S′}(x−R(S, S′)2), which has integral coefficients, so

they can be found by rounding. Finally, look at the Newton polygon of this
polynomial and take its largest slope as an upper bound for the (additive)
valuation of c.

A still better bound can be obtained in some cases by really considering
the ai,{S,S′}. We know by Lemma 4.1 that 4∆ai,{S,S′} is integral. Hence we
can, for each i, form the polynomial

pi(x) =
∏

{S,S′}
(x− 16 disc(F )a2

i,{S,S′}) ∈ O[x]

and look at its Newton polygon. The absolute value γ corresponding to the
minimum of all the slopes in the Newton polygons gives the refinement

(7.4)
1
c
≤ γ

|24 disc(F )| .

This approach can be used to obtain a better general bound in case F
is not primitive. Let Fred denote the primitive part of F , and let λ be the
content of F (so that F = λFred). Tracing the content through the various
formulas leads to the following general refinement.

Proposition 7.1. In the situation of Theorem 6.1, we have

c ≥ |(2λ)4 disc(Fred)|,
with the refinement

c ≥ |2λ|4 min
{S,S′}

|Rred(S, S′)|2,

where {S, S′} runs through all partitions of {1, . . . , 6} into two three-element
subsets, and where Rred(S, S′) means R(S, S′) evaluated for Fred instead
of F .

This is indeed better than the bounds in the theorem and in (7.3), since
R(S, S′) = λ3Rred(S, S′) and disc(F ) = λ10 disc(Fred).

In order to get some indication of how good the bounds are, let us try to
find an upper bound on c. Since the 2-torsion points play a special role, it
is natural to use them for this purpose. Let U = {i, j} be some two-element
subset of {1, . . . , 6}, and let U ′ denote its complement. Write

∏

m∈U
(βmX − αmZ) = A(X,Z) = a0X

2 − a1XZ + a2Z
2,
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∏

m∈U ′
(βmX − αmZ) = B(X,Z)

= b0X
4 − b1X3Z + b2X

2Z2 − b3XZ3 + b4Z
4.

Then the image of tU inK is given by (a0 : a1 : a2 : −(a2
2+a2b2+b4)), and the

duplication map evaluated at these coordinates gives (0 : 0 : 0 : R(U,U ′)2).
Here, R(U,U ′) = r(i, j) denotes the resultant of A and B. If we again write
λ for the content of F and Rred(U,U ′) for the resultant of the primitive
parts of A and B, then we get the following result.

Proposition 7.2. Under the assumption that F splits completely over k,
we have the following upper bound on c:

c ≤ |λ|4 min
{U,U ′}

|Rred(U,U ′)|2,

where {U,U ′} runs through all partitions of {1, . . . , 6} into a two-element
and a four-element subset.

If the polynomial F does not split completely over the field we are in-
terested in, then we have to restrict to the 2-torsion points defined over k
(there may be none) to get a lower bound on the height constant defined
with respect to the k-rational points on K.

8. The number field case. Now suppose k is a number field and assume
that F has coefficients in Ok, the integers of k. Then we get bounds on the
various local height constants cv for all the places v of k. Let HK denote the
naive height induced on K by the embedding into P3; we will also denote
by HK the function induced on the Jacobian J . Recall the definition of the
height on projective space:

H(x1 : . . . : xn) =
∏
v

max{|x1|v, . . . , |xn|v},

where v runs through the places of k and |·|v is the normalised absolute value
(multiplication by x multiplies volumes in kv by |x|v). Let hK = logHK

denote the corresponding logarithmic height, and let finally ĥ denote the
canonical height on J associated with hK . Recall that this is defined as
ĥ(P ) = limn→∞ hK(nP )/n2.

By Theorem 4 of [3], we have

hK(P ) ≤ ĥ(P ) +
1
3

∑
v

log c−1
v

for all P ∈ J(k). Let l be the content of F (i.e., the ideal generated by its
coefficients), and let Nk/Q(l) = #Ok/l denote its norm. Then we get the
following global result. (In this section, | · | denotes the usual absolute value
on Q.)
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Corollary 8.1. For all points P ∈ J(k), we have

hK(P ) ≤ ĥ(P ) +
4
3

[k : Q] log 2− 2 logNk/Q(l)

+
1
3

log |Nk/Q(disc(F ))|+ 1
3

∑

v|∞
log c−1

v .

The local height constants cv for the infinite places of k can be estimated
using (7.1).

P r o o f. This follows from Proposition 7.1, the above-mentioned theo-
rem of [3] and the definition of the height, taking into account the product
formula for the absolute values on k.

Remark. Since the bounds on the local height constants are valid on
algebraic points, a similar result holds for normalised heights of algebraic
points—simply divide by the degree [k : Q].

In particular, taking k = Q for simplicity, we get the following bound for
the naive height of a torsion point.

Corollary 8.2. Let P ∈ J(Q) be a torsion point. Then

HK(P ) ≤ 24/3|λ|−2|disc(F )|1/3c−1/3
∞ ,

where λ is the content of F .

P r o o f. This is a special case of Corollary 8.1—torsion points have canon-
ical height zero.

This yields a practical algorithm for computing the rational torsion sub-
group of J as follows. We first find some bound on the size of the torsion
subgroup (by looking at #J(Fp) for a few primes p of good reduction). Then
we systematically try to lift possible torsion points from J(Fp) (p good and
prime to the order of the point in question) to J(Q). It is fairly easy to lift
them to J(Qp) to any desired accuracy, and the height bound of the corol-
lary gives us the possibility to decide that the point cannot come from J(Q)
if its naive height would have to be too big. See Section 11 for a detailed
description of this algorithm.

9. Discussion. A somewhat related approach to finding the height con-
stant is introduced in Flynn’s paper [2]. Instead of using all of the 2-torsion
at once, he splits the duplication map into two Richelot isogenies. Accord-
ingly, he uses the action of the kernels of these isogenies at each step. This
has the advantage that these kernels embed into GL(4) without problems.
The disadvantage of Flynn’s approach is that it does not take into account
that we are only interested in points on K. The method of [2] effectively
gives a bound for min |δ(k)|/|k|4 over all of P3.
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The results of [2] are also quoted in [3]. The examples given there indicate
that the bound one gets with this method is usually worse than the bound
given by our theorem (see the third example below). Another disadvantage
is that the bound depends on the choice of a splitting of F as a product
of three polynomials of degree two. Furthermore, as described in [2, 3], the
method requires the knowledge of the bad primes, and one usually has to
perform computations in algebraic extensions of Qp. (This is the reason
why these bounds are given only for the last example—it has a canonical
factorisation, and the computation involves only square roots.)

Here are some tables comparing the various bounds for the examples
given in [3]. Recall that γv = log c−1

v and that this is denoted c(v)
1 in [3]. The

last column in each table gives the lower bound on γp from Proposition 7.2.
This is a lower bound for the height constant taken over all algebraic points.
Hence it is not a contradiction if this entry is larger than the bound given
in [3], since the latter refers to the rational points only. This lower bound
gives an indication, however, of the best possible bound we can obtain with
our method.

First example: Y 2 = X6 + 8X5 + 22X4 + 22X3 + 5X2 + 6X + 1.

[3] Thm. 6.1 (7.3) (7.4) J(Qp)[2]

γ2 6 log 2 16 log 2 16 log 2 12 log 2 ≥ 8 log 2
γ3701 log 3701 log 3701 log 3701 log 3701 ≥ log 3701

The bound from [3] was obtained by an exhaustive search over the points
of K, and hence should be best possible. The same applies to the other two
examples below. For the infinite place, [3] gives the bound 4.422, whereas
(7.1) gives 7.798. On the other hand, Flynn and Smart’s bound was ob-
tained by a numerical method and might not be accurate. In fact, a sort of
“guided random search” for points onK(R) reveals the point (1 : −34.47 . . . :
96.79 . . . : −661.88 . . .) ∈ K(R) which gives a value of γ∞ ≥ 6.723, contra-
dicting the bound given in [3]. Indeed, looking only at the three real 2-torsion
points already gives γ∞ ≥ 4.439.

Second example: Y 2 = X5 + 16X4 − 274X3 + 817X2 + 178X + 1.

[3] Thm. 6.1 (7.3) (7.4) J(Qp)[2]

γ2 4 log 2 4 log 2 4 log 2 4 log 2 ≥ 0
γ191 2 log 191 2 log 191 2 log 191 2 log 191 ≥ 2 log 191
γ941 2 log 941 4 log 941 12

5 log 941 12
5 log 941 ≥ 12

5 log 941

The bound of 12
5 log 941 for γ941 gives 2 log 941 over Q941, since γp is the

maximum of numbers that are integral multiples of log p. From (7.1), we get
γ∞ ≤ 4.264, whereas Flynn and Smart claim that γ∞ ≤ 0. Looking at 105



The height constant for curves of genus two 195

randomly chosen points on K(R) gives γ∞ ≥ 0.268, and the real 2-torsion
gives γ∞ ≥ 0.2127.

Third example: Y 2 = (X2 + 6X + 7)(X2 + 4X + 1)(X2 + 2X + 3).

[2] [3] Thm. 6.1 (7.3) (7.4) J(Qp)[2] J(Qp)[2]

γ2 97 log 2 16 log 2 34 log 2 23 log 2 21 log 2 ≥ 16 log 2 ≥ 17 log 2
γ3 3 log 3 2 log 3 3 log 3 2 log 3 2 log 3 ≥ 2 log 3 ≥ 2 log 3

Here, the next-to-last column gives the lower bound one gets from looking
at the Qp-rational 2-torsion only. From (7.1), we get γ∞ ≤ 13.528, whereas
Flynn and Smart claim that γ∞ ≤ 2.6836. The same method as was used
for the first example gives γ∞ ≥ 12.963; this value comes from the point
Q = (9 : −49 : 60 : −1180.8716 . . .) ∈ K(R). The Q-rational 2-torsion
point coming from the first factor already yields γ∞ ≥ 8.56. Note that the
image (1 : −6 : 7 : −136) on K of this torsion point is quite near to Q.
This shows that |δ(P )|/|P |4 can vary quite fast, which makes numerical
methods difficult to apply safely. As a last facet of this example, consider
the Q-rational point

P =
{(−281 +

√
12286

105
,
−411296− 4784

√
12286

1157625

)
,

(−281−√12286
105

,
−411296 + 4784

√
12286

1157625

)}

on the Jacobian. It has image (105 : −562 : 635 : −12656) on the Kummer
surface, so hK(P ) = log 12656 = 9.446, but using the method of [3], one
computes ĥ(P ) = 4.007, hence

hK(P )− ĥ(P ) = 5.439,

which is larger than the bound 5.3237 given in [3].
It is clear that the archimedean bound of (7.1) will usually not be sharp,

since the archimedean triangle inequality gives only a crude estimate, but
the examples show that the bound is not too bad in practice. On the other
hand, the examples indicate that Theorem 6.1 and its refinements usually
give quite good bounds at odd primes, whereas at p = 2, there might still
be some room for improvement.

As already remarked after Theorem 6.1, the bounds obtained (and this
also holds for the various refinements) are valid on the algebraic closure of k.
This means that the bounds fail to be sharp when the minimum is attained
outside the k-rational points. In some cases, however, we can use integrality
properties of the valuation to improve the bound as in the second example
above.
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The approach given here should (at least in principle) generalise to Ja-
cobians of higher genus hyperelliptic curves. The corresponding Kummer
variety is a g-dimensional subvariety of P2g−1, and the 2-torsion subgroup
of the Jacobian acts on it by linear transformations. To get an explicit
bound, however, one needs sufficiently explicit expressions for the matrices
giving these linear maps and for the polynomials defining the Kummer va-
riety and the duplication map. Since the dimension of the projective space
grows exponentially with the genus, it might be quite difficult to obtain such
expressions.

10. Explicit formulas. In this section, we will make the relations given
in Lemmas 4.1 and 5.2 explicit. The calculations have been done with the
Magma system for computer algebra. We fix some partition {S, S′}. Let

∏

j∈S
(βjX − αjZ) = σ0X

3 + σ1X
2Z + σ2XZ

2 + σ3Z
3,

∏

j∈S′
(βjX − αjZ) = τ0X

3 + τ1X
2Z + τ2XZ

2 + τ3Z
3.

Then yS,S′ can be taken as follows.

Formula 10.1.

yS,S′ = x2
4 + 2(σ2τ0 + σ0τ2)x3x4−2(σ3τ0 + σ0τ3)x2x4 + 2(σ3τ1 + σ1τ3)x1x4

+ ((σ1τ0 − σ0τ1)(σ3τ0 − σ0τ3 + σ2τ1 − σ1τ2) + 4σ0σ2τ0τ2)x2
3

+ 2(−σ1τ1(σ3τ0 + σ0τ3) + σ2
1τ0τ3 + σ0σ3τ

2
1

− 2σ0τ0(σ3τ2 + σ2τ3))x2x3

+ 2(−(σ3τ0 − σ0τ3)2 + (σ1τ2 + σ2τ1)(σ3τ0 + σ0τ3))x1x3

+ (σ1σ3τ0τ2 + σ0σ2τ1τ3 − σ1σ2τ0τ3 − σ0σ3τ1τ2 + 4σ0σ3τ0τ3)x2
2

+ 2(−σ2τ2(σ3τ0 + σ0τ3) + σ2
2τ0τ3 + σ0σ3τ

2
2

− 2(σ1τ0 + σ0τ1)σ3τ3)x1x2

+ (σ2
3τ0τ2 + σ0σ2τ

2
3 + σ2τ2(σ3τ1 + σ1τ3)− (σ2τ0 + σ0τ2)σ3τ3

−σ2
2τ1τ3 − σ1σ3τ

2
2 + 4σ1σ3τ1τ3)x2

1.

The following expresses y2
S,S′ in terms of the δj (needed for Lemma 5.2).

Formula 10.2.

y2
S,S′ = − ((σ3τ0 + σ0τ3)2 + 2(σ1σ2τ0τ3 + σ0σ3τ1τ2)

+ 3(σ1σ3τ0τ2 + σ0σ2τ1τ3) + 5(σ2σ3τ0τ1 + σ0σ1τ2τ3))δ0
+ (σ3τ1 + σ1τ3)δ1 − (σ3τ0 + σ0τ3)δ2 + (σ2τ0 + σ0τ2)δ3 + δ4.



The height constant for curves of genus two 197

Now, let

R = R(S, S′) =
∏

i∈S

∏

j∈S′
(αiβj − αjβi).

Then we can express the x2
j in terms of the yS,S′ as follows. We only give

the coefficient of one y = yS,S′ ; the others can be found by symmetry. Note
that R changes sign when we interchange S and S′; since the second factor
in each of the expressions below does the same, the coefficient of y is well
defined.

Formula 10.3.

x2
1 = − 1

4R
(σ1τ0 − σ0τ1)y + . . . ,

x2
2 = − 1

4R
(σ3τ0 − σ0τ3 + σ2τ1 − σ1τ2)y + . . . ,

x2
3 = − 1

4R
(σ3τ2 − σ2τ3)y + . . . ,

x2
4 = − 1

4R
(σ1σ

2
3τ

2
0 τ2 − σ2

0σ2τ1τ
2
3 + σ1σ2τ1τ2(σ3τ0 − σ0τ3)

−σ3τ3(σ1σ2τ
2
0 − σ2

0τ1τ2)− σ1τ1(σ2
2τ0τ3 − σ0σ3τ

2
2 )

−σ2
1σ3τ0τ

2
2 + σ0σ

2
2τ

2
1 τ3 + 4σ1σ3τ1τ3(σ1τ0 − σ0τ1)

+σ2τ2(σ2
1τ0τ3 − σ0σ3τ

2
1 )− σ0τ0(σ2

3τ1τ2 + τ2
3σ1σ2)

+σ0τ0(4σ3τ3(σ3τ0 − σ0τ3) + 4σ2τ2(σ3τ2 − σ2τ3)

− 3σ3τ3(σ2τ1 − σ1τ2)))y + . . .

Since R divides ∆, these formulas show that 4∆x2
j is an integral linear

combination of the yS,S′ for each j. In a similar way, we get formulas for the
mixed monomials xixj . Together, these formulas prove Lemma 4.1.

Formula 10.4.

x1x2 = − 1
4R

(σ2τ0 − σ0τ2)y + . . . ,

x1x3 = − 1
4R

(σ3τ0 − σ0τ3)y + . . . ,

x1x4 = − 1
4R

(−σ1τ1(σ3τ0 − σ0τ3)− (σ2
1τ0τ3 − σ0σ3τ

2
1 )

− 2σ0τ0(σ3τ2 − σ2τ3))y + . . . ,

x2x3 = − 1
4R

(σ3τ1 − σ1τ3)y + . . . ,

x2x4 = − 1
4R

(σ2
3τ

2
0 − σ2

0τ
2
3 − (σ2σ3τ0τ1 − σ0σ1τ2τ3)

− (σ1σ3τ0τ2 − σ0σ2τ1τ3))y + . . . ,
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x3x4 = − 1
4R

(−σ2τ2(σ3τ0 − σ0τ3) + (σ2
2τ0τ3 − σ0σ3τ

2
2 )

− 2σ3τ3(σ1τ0 − σ0τ1))y + . . .

For the three products of two of the yS,S′ lying in the same non-trivial
eigenspace in Sym4 V , we get the following relation. As a representative, we
take the eigenspace of the character given by the Weil pairing with t{1,2}.

Formula 10.5.
0 = (α3β4 − α4β3)(α5β6 − α6β5)y{1,3,4},{2,5,6}y{1,5,6},{2,3,4}

+ (α3β5 − α5β3)(α6β4 − α4β6)y{1,3,5},{2,4,6}y{1,4,6},{2,3,5}
+ (α3β6 − α6β3)(α4β5 − α5β4)y{1,3,6},{2,4,5}y{1,4,5},{2,3,6}.

11. An algorithm for determining the rational torsion subgroup.
In this section, we give a more detailed description of the algorithm that
has been rather tersely summarised at the end of Section 8. We will denote
the multiplication-by-m map (on the Jacobian and on the Kummer surface)
by [m] in order to distinguish it from scalar multiplication of coordinates.

We assume that C is a curve of genus two over Q, which is given by an
equation

Y 2 = f(X) = F (X, 1)
with F homogeneous of degree 6 and with integral coefficients. We want to
determine the torsion subgroup T of J(Q), where J is the Jacobian of C.

The first step is to choose a few odd primes p not dividing the discrimi-
nant of F (so that C and hence J have good reduction there) and to compute
#J(Fp) for each of these p. It is not our subject here to discuss ways of doing
this, but since these primes are typically small, simply counting the points
on C over Fp and over Fp2 will do in most cases. Then we can use the formula

#J(Fp) = 1
2 (#C(Fp)2 + #C(Fp2))− p

to find #J(Fp).
Let g be the gcd of all these numbers. Then the order of T divides g.
Now T , being a finite abelian group, is the product of its various q-parts

for all primes q. Since we know that #T divides g, only the primes q dividing
g can occur. So we consider each prime divisor q of g in turn and determine
the q-part Tq of T .

Among the primes considered in the first step, we choose some p 6= q
such that the q-adic valuation of #J(Fp) is minimal. Let G be the q-part of
J(Fp). We have the well-known exact sequence [1, §§ 7.3, 7.4]

0→ J1(Qp)→ J(Qp)→ J(Fp)→ 0,

where J1(Qp) is the “kernel of reduction”, which is a uniquely q-divisible
group. This implies that there is a unique section G → J(Qp). Identifying
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G and J(Q) with their respective images in J(Qp), we have Tq = G∩ J(Q).
Our task is therefore the following:

Find the subgroup of G consisting of points that lift to J(Q) (together
with their image in J(Q)).

Of course, we first need to find G explicitly. Since we know its order
and its index in J(Fp), we can simply take random elements of J(Fp) and
multiply them by the index to get something in G until the group generated
by all the elements we have got in this way has the correct order.

We will now describe how to decide whether a point P ∈ G lifts to J(Q)
or not (if it does, its image in J(Q) is also determined). Afterwards, we will
give a general algorithm that finds a subgroup in a finite q-group, given that
we can check whether an element belongs to the subgroup or not.

In order to find out whether a point P ∈ G lifts to J(Q), we first have
to lift it to J(Qp) and then must decide whether this lifted point is in J(Q).
Let B be the bound given by Corollary 8.2, and let N ′ be the smallest
integer such that pN

′
> 2B2. Then it is easy to check that the set of points

P ∈ P3(Q) with H(P ) ≤ B is mapped injectively into P3(Z/pN ′Z). So
all we have to do is to lift the given point to J(Z/pN ′Z), find its unique
approximation of height ≤ B in J(Q) (if it exists; if it does not, we are
done) and check that this really is a torsion point of the correct order. In
practice, we will take N to be the smallest integer such that pN > 26B2. This
will enable us to use the LLL algorithm to find the rational approximation of
height ≤ B (we have to take into account that LLL produces small vectors
with respect to the usual euclidean norm (requiring 23B2 instead of 2B2)
and that it does not necessarily give the smallest vector).

The following method for computing the lifting to J(Z/pNZ) of the
given torsion point P ∈ G was suggested to me by Bjorn Poonen. The
group J(Qp) is a (p-adic) abelian Lie group. Therefore the differential of the
multiplication-by-m map on J(Qp) is simply scalar multiplication by m on
the tangent space (the Lie algebra). Now let Q ∈ J(Qp) be a torsion point
of order m (prime to p), and let φ : J → An be a rational map defined over
Qp that is an immersion near Q. Suppose that a is an integer chosen so that
p divides 1 + am. Then for points Q′ near Q, we have

(11.1) φ([1 + am]Q′)− φ(Q) = (1 + am)(φ(Q′)− φ(Q)) +O((1 + am)2).

We want to take some standard affine patch of the map J → K → P3 as our
φ. This means that we have to treat points P of order 2 separately, since K
has singularities there. This is not a problem, since it is straightforward to
determine J(Q)[2] explicitly.

So let P have order m ≥ 3. The following procedure will decide whether
P lifts to J(Q) or not. We take some standard affine patch of P3 which
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contains the image of P on K and perform all computations in terms of
these coordinates.

1. Choose a ∈ Z such that M = 1 + am is divisible by p.
2. Let Q0 be the image of P in K(Z/pZ) and set r = 1 and n = 0.
3. While r < N , repeat the following steps.

3.1. Replace r by min{2r,N}.
3.2. Let Q′n be some lifting of Qn to K(Z/prZ).
3.3. Set Qn+1 = 1

M−1 (MQ′n − [M ]Q′n).
(An algorithm for computing the multiplication-by-M map on the
Kummer surface is given in [3].)

3.4. Replace n with n+ 1.
Since p |M , we deduce inductively from (11.1) that at the beginning
of step 3.1, Qn is the m-torsion point in K(Z/prZ) lifting Q0.

4. Let (q1 : q2 : q3 : q4) be representatives in Z of the projective coordi-
nates of Qn (we can choose some qj = 1). Apply the LLL algorithm
to find a small vector R′ in the lattice generated by (q1, q2, q3, q4) and
pN times the standard basis of Z4. Let R be the point in P3(Q) with
projective coordinates R′. (By our choice of N , we know that R will
be the unique point of height ≤ B mapping to Qn if such a point
exists.)

5. If R 6∈ K(Q) or H(R) > B, then return “No”.
6. If [m]R is not the origin of K(Q) (i.e., the image of the origin on J),

then return “No”.
Note that we can use the height bound B to stop this computation

as soon as an intermediate result gets too big.
7. If R lifts to J(Q) then return “Yes” and one of its preimages, otherwise

return “No”.
(To decide whether R comes from a rational point on J boils down

to checking if some expressions in the coordinates are rational squares
or not.)

Now we can decide whether any given element P ∈ G belongs to T or
not. To find G ∩ T itself, we can use the following procedure.

1. Let G0 = G, T0 = {0} ⊂ G, and S0 = G0 \ {0}, S′0 = {0}.
2. Set n = 0 and repeat the following steps until Sn = ∅.

2.1. Let g ∈ Sn be some (random) element and let g̃ ∈ G be an
element mapping to g. (It might be a good idea to choose g either
primitive or of order q in Gn.)

2.2. Using the algorithm above, find the smallest m ≥ 0 such that
qm · g̃ ∈ T . (Recall that G is a q-group.)
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2.3. Set
Tn+1 = 〈Tn, qm · g̃〉

= inverse image of 〈qm · g〉 ⊂ Gn in G,

Gn+1 = G/Tn+1 = Gn/〈qm · g〉,
S′n+1 = image of S′n ∪ 〈g〉 in Gn+1,

Sn+1 = Gn+1 \ S′n+1.

2.4. Replace n with n+ 1.
(Sn and S′n always define a partition of Gn. S′n contains zero and the
elements which are known not to be in T , so Sn contains the elements
which we have still to check.)

3. Return Tn, which is the subgroup T ∩ G. Generators of T ∩ G have
been found on the way in step 2.3.

This algorithm has been implemented by the author as part of a forth-
coming Magma package dealing with hyperelliptic curves and their Jaco-
bians.
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