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Generalized Vandermonde determinants
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1. Introduction. Let k ≥ 2 be an integer, and let α1, . . . , αk be non-zero
elements in a field of characteristic zero. Define the function F (X1, . . . , Xk)
in integral variables X1, . . . , Xk by

(1.1) F (X1, . . . , Xk) =

∣∣∣∣∣∣

αX1
1 . . . αX1

k

. . . . . . . . . . . . . . .
αXk1 . . . αXkk

∣∣∣∣∣∣
.

F (0, 1, . . . , k−1) is the usual Vandermonde determinant and it is well known
that

F (0, 1, . . . , k − 1) =
∏

1≤i<j≤k
(αj − αi).

In particular, F (0, 1, . . . , k−1) = 0 if and only if there exists a pair i, j with
1 ≤ i < j ≤ k such that αi = αj .

We say that F (X1, . . . , Xk) is non-degenerate if for any pair i, j with
1 ≤ i < j ≤ k the ratio αi/αj is not a root of unity.

It is the purpose of the present paper to study the equation

(1.2) F (x1, . . . , xk) = 0

with x1, . . . , xk ∈ Z and F non-degenerate.
Our definition (1.1) shows that F satisfies the functional equation

F (X1, . . . , Xk) = (α1 . . . αk)X1F (0, X2 −X1, . . . , Xk −X1).

Therefore, in studying (1.2) it suffices to study

(1.3) F (0, y2, . . . , yk) = 0

with y2, . . . , yk ∈ Z.
We say that a solution (y2, . . . , yk) ∈ Zk−1 of (1.3) is in general position
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if in the corresponding determinant

(1.4)

∣∣∣∣∣∣∣∣

1 . . . 1
αy2

1 . . . αy2
k

. . . . . . . . . . . . . .
αyk1 . . . αykk

∣∣∣∣∣∣∣∣
no proper subdeterminant vanishes. We prove

Theorem 1.1. Let α1, . . . , αk be non-zero elements in a field of char-
acteristic zero. Suppose that the function F (X1, . . . , Xk) defined by (1.1) is
non-degenerate. Then equation (1.3) does not have more than

(1.5) exp((6k!)3k!)

solutions (y2, . . . , yk) ∈ Zk−1 in general position.

The significant feature in our bound (1.5) is that it depends only on the
dimension k but is completely independent of α1, . . . , αk.

Our proof uses a recent result of Evertse, Schlickewei and Schmidt [4]
on linear equations over finitely generated multiplicative groups, and there-
fore implicitly it is an application of the subspace theorem in diophantine
approximation.

It is plausible that, under the assumptions of Theorem 1.1, equation
(1.3) has only finitely many solutions (y2, . . . , yk) ∈ Zk−1 satisfying some
condition weaker than the above. We state the following

Conjecture. Let α1, . . . , αk and F (X1, . . . , Xk) be as in Theorem 1.1.
Then equation (1.3) has at most finitely many solutions (y2, . . . , yk) ∈ Zk−1

such that in the corresponding determinant (1.4) all (k − 1) × k and all
k × (k − 1) submatrices have rank k − 1.

We postpone the proof of Theorem 1.1 to Sections 4–6.
In the next two sections we apply Theorem 1.1 to linear recurrence se-

quences.

2. Applications to recurrence sequences. For k ≥ 2 we consider
linear recurrence sequences (un)n∈Z of order k, i.e., sequences satisfying a
relation

(2.1) un+k = νk−1un+k−1 + . . .+ ν0un.

For simplicity, we assume here that ν0, . . . , νk−1 are given elements in an
algebraically closed field K of characteristic zero, and that ν0 6= 0. To avoid
trivialities, we also assume that the sequence has initial values u0, . . . , uk−1 ∈
K not all equal to zero. Let

(2.2) G(z) = zk − νk−1z
k−1 − . . .− ν0 =

k∏

i=1

(z − αi)
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be the companion polynomial of the recurrence relation (2.1). The roots αi
of G(z) are called the characteristic roots of the recurrence sequence (un).
We restrict ourselves to sequences (un) with simple characteristic roots αi.
So in (2.2) we assume that

(2.3) αi 6= αj for all i, j with 1 ≤ i < j ≤ k.
Notice that our hypothesis ν0 6= 0 implies

(2.4) α1 . . . αk 6= 0.

It is well known that under these assumptions our sequence has a represen-
tation

(2.5) un = a1α
n
1 + . . .+ akα

n
k (n ∈ Z)

with certain coefficients ai ∈ K, not all equal to zero, depending on the initial
values u0, . . . , uk−1. Vice versa, given α1, . . . , αk ∈ K as in (2.3), (2.4), define
ν0, . . . , νk−1 by relation (2.2). Then for any choice of a1, . . . , ak ∈ K not all
zero, the sequence (un)n∈Z obtained via (2.5) is a non-trivial solution of the
recurrence relation (2.1).

In the sequel we will suppose that our sequence (un) has minimal order
k, i.e., that it does not satisfy a non-trivial relation (2.1) of order < k. This
is equivalent to the assumption that in (2.5),

(2.6) a1 . . . ak 6= 0.

The zero-multiplicity M(0) of our sequence is defined as the number of
solutions n ∈ Z of the equation

(2.7) un = 0.

The theorem of Skolem–Mahler–Lech implies the following: Suppose (un) is
a linear recurrence sequence of order k with infinite zero-multiplicity M(0).
Then there exists a pair i, j with 1 ≤ i < j ≤ k such that αi/αj is a root
of unity. Accordingly, the sequence (un) is called non-degenerate if for each
pair i, j (1 ≤ i < j ≤ k),

(2.8) αi/αj is not a root of unity.

In [4], Evertse, Schlickewei and Schmidt have shown that, for any non-
degenerate sequence (un) of order k with simple characteristic roots as
above, we have

(2.9) M(0) < exp(2(6k)3k).

For further references on this problem, the reader is referred to [4].
Our result in Theorem 1.1 implies that in most cases much more than

(2.9) is true. To discuss what may be expected, suppose first that in (2.5)
the coefficients a1, . . . , ak are real numbers and that α1, . . . , αk are positive
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numbers. Under these assumptions, it is easy to show that the equation

(2.10) a1α
x
1 + . . .+ akα

x
k = 0

even has at most k− 1 solutions x ∈ R. Thus in particular, under the above
restrictions, for equation (2.7) we get

(2.11) M(0) ≤ k − 1.

We briefly give the argument for this assertion, using induction on k. For
k = 2, writing β = α1/α2, a = −a2/a1, equation (2.10) becomes βx = a
with β > 0, β 6= 1, a ∈ R. So we get at most one solution x ∈ R.

Now suppose k > 2 and our assertion on equation (2.10) to be true for
k − 1. We write (2.10) as

(2.12) a1β
x
1 + . . .+ ak−1β

x
k−1 + ak = 0,

with βi = αi/αk. The derivative of the left-hand side of (2.12) is

(a1 log β1)βx1 + . . .+ (ak−1 log βk−1)βxk−1.

By the inductive assumption, it has at most k−2 real zeros. But then Rolle’s
theorem implies that (2.12) has at most k − 1 real solutions.

As a consequence of Theorem 1.1, we prove that in general, apart from
a few exceptional cases, even when the ai and αi are not contained in R the
bound given in (2.11) essentially remains true.

Given two linear recurrence sequences (un) and (vn) of order k, we say
that (un) and (vn) are equivalent if there exist a ∈ K, a 6= 0, and an integer
h such that

vn = aun+h for all n ∈ Z.

Writing Mu(0) and Mv(0) for the zero-multiplicities of (un) and (vn) re-
spectively, it is clear that for equivalent sequences we have Mu(0) = Mv(0).
In fact, if (un) and (vn) are equivalent there is a bijection between the set
of zeros of (un) and the set of zeros of (vn). Therefore, it makes sense to
speak of the zero-multiplicity of an equivalence class.

Also, equivalent sequences clearly satisfy the same recurrence relation
(2.1) and have the same characteristic roots α1, . . . , αk.

Fix α1, . . . , αk ∈ K with (2.4) and (2.8), and let (un) be given by (2.5)
with coefficients a1, . . . , ak ∈ K satisfying (2.6). If n1, . . . , nk are solutions
of (2.7), in view of (2.5) we have

∣∣∣∣∣∣

αn1
1 . . . αn1

k

. . . . . . . . . . . . . .
αnk1 . . . αnkk

∣∣∣∣∣∣
= 0.

In analogy with our definition in Section 1, we say that solutions n1, . . . , nl
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of (2.7) are in general position if in the matrix


αn1

1 . . . αn1
k

. . . . . . . . . . . . . .
αnl1 . . . αnlk




no subdeterminant of order ≤ k − 1 vanishes. We prove the following

Theorem 2.1. Let K be an algebraically closed field of characteristic
zero. Fix non-zero elements α1, . . . , αk ∈ K such that αi/αj is not a root of
unity for i 6= j. Let E be the set of equivalence classes of recurrence sequences
(un)n∈Z of minimal order k and with characteristic roots α1, . . . , αk. Then,
apart from at most exp((6k!)3k!) exceptional classes, any equivalence class
in E does not have more than k − 1 zeros in general position.

By non-degeneracy, it is obvious that for k = 2 any equivalence class
in E has at most one zero. Theorem 2.1 essentially says that for almost all
equivalence classes of recurrence sequences the estimate (2.11) remains true
in general.

Another consequence is the following. Let α1, . . . , αk be fixed elements
in K satisfying (2.4) and (2.8). For any k-tuple a = (a1, . . . , ak) ∈ Kk with
a1 . . . ak 6= 0, the vectors (αn1 , . . . , α

n
k ) solving the equation

un = a1α
n
1 + . . .+ akα

n
k = 0

are contained in the linear subspace Ha of Kk defined by the equation

(2.13) a1x1 + . . .+ akxk = 0.

It follows from (2.9) that the set of such vectors (αn1 , . . . , α
n
k ) is contained in

the union of not more than exp(2(6k)3k) one-dimensional linear subspaces
of Ha. Our Theorem 2.1 implies that, apart from some exceptional cases,
the above set is covered by a union of linear subspaces of codimension 1 in
Ha whose number does not exceed a bound simply exponential in k. We
have

Corollary 2.2. Let k ≥ 3. For all but at most exp((6k!)3k!) equivalence
classes of linear recurrence sequences

un = a1α
n
1 + . . .+ akα

n
k

of minimal order k and with characteristic roots α1, . . . , αk satisfying (2.4)
and (2.8), the vectors (αn1 , . . . , α

n
k ) such that un = 0 are contained in the

union of not more than

(2.14)
(

2k − 1
k

)
− k(k − 1)− 2

linear subspaces of codimension 1 in Ha.
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We remark that the quantity (2.14) is less than

(2.15) 22k−1/
√
kπ.

It is clear that in the case k = 2 our results are trivial. Notice that
for k = 3 the integer (2.14) is 2. For k = 3, Evertse, Győry, Stewart and
Tijdeman [3] have proved the following:

Let K be a number field. Let S be a finite subset of the set of valuations
of K containing the archimedean ones. Let US be the group of S-units of K.
Two equations

(2.16) a1x1 + a2x2 + a3x3 = 0

and

a′1x1 + a′2x2 + a′3x3 = 0

are called S-equivalent if there exist λ ∈ K× and ε1, ε2, ε3 ∈ US such that
a′i = λεiai. In [3] it is shown that all but finitely many equivalence classes
of S-unit equations (2.16) have not more than two projective solutions (x1 :
x2 : x3) with components in US .

In fact, if we have an equation (2.16) with three distinct projective so-
lutions (x1 : x2 : x3), (y1 : y2 : y3), (z1 : z2 : z3) say, then

(2.17)

∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣
= 0

and, as the solutions are distinct, in (2.17) no proper subdeterminant van-
ishes. So for cyclic groups Γ our theorems generalize the result of [3] to
arbitrary dimension k. We also mention in the context of Corollary 2.2 that
for equivalence classes of S-unit equations (2.13) Evertse and Győry [2] have
proved the following:

For all but finitely many S-equivalence classes of equations (2.13), the
solutions in S-units of (2.13) are contained in the union of fewer than 2k!

(k − 2)-dimensional linear subspaces of the subspace Ha defined by (2.13).
The bound 2k! was improved by Evertse [1] to (k − 1)! 2k.
We can express our results more geometrically. Let Γ be the cyclic sub-

group of (K×)k generated by (α1, . . . , αk). Let H be a hyperplane in Kk
defined by an equation

(2.18) a1x1 + . . .+ akxk = 0

with

(2.19) a1 . . . ak 6= 0.

We say that a hyperplane H ′ is equivalent mod Γ to H if there exists a point
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(αh1 , . . . , α
h
k) ∈ Γ such that H ′ is defined by the equation

(a1α
h
1 )x1 + . . .+ (akαhk)xk = 0.

We may phrase Theorem 2.1 in the following way:

Corollary 2.3. There are at most exp((6k!)3k!) equivalence classes of
linear subspaces H of codimension 1 in Kk defined by an equation (2.18)
with (2.19) such that H ∩ Γ contains more than k − 1 points (αn1 , . . . , α

n
k )

in general position.

3. Proof of Theorem 2.1 and of the corollaries. Theorem 2.1 is an
easy consequence of Theorem 1.1. In fact, suppose that (un) is a recurrence
sequence that represents an exceptional equivalence class, i.e., suppose that
the equation un = 0 has more than k − 1 solutions in general position. By
equivalence, we may suppose that u0 = 0, and we have k − 1 further zeros
n2, . . . , nk such that 0, n2, . . . , nk are in general position. Therefore we get

(3.1)

∣∣∣∣∣∣∣∣

1 . . . 1
αn2

1 . . . αn2
k

. . . . . . . . . . . . . .
αnk1 . . . αnkk

∣∣∣∣∣∣∣∣
= 0,

and here no proper subdeterminant vanishes. By Theorem 1.1, equation (3.1)
has not more than exp((6k!)3k!) solutions (n2, . . . , nk) in general position.
However, given n2, . . . , nk as above, the coefficients a1, . . . , ak of un in (2.5)
are uniquely determined up to a common factor a 6= 0, and Theorem 2.1
follows.

As for Corollary 2.2, suppose (un) represents a class that is not excep-
tional. Then the equation

un = a1α
n
1 + . . .+ akα

n
k = 0

has ≤ k− 1 solutions in general position. Let n1, . . . , nl be a maximal set of
solutions in general position, whence l ≤ k − 1. By the maximality of l, for
any n such that un = 0 the matrix

(3.2)




αn1
1 . . . αn1

k

. . . . . . . . . . . . . .
αnl1 . . . αnlk
αn1 . . . αnk




contains a square submatrix with vanishing determinant of an order j such
that

(3.3) 2 ≤ j ≤ min{l + 1, k − 1}.
Since n1, . . . , nl are in general position, the intersection of the submatrix
with the last row is non-empty. If the columns occurring in the submatrix
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have indices h1, . . . , hj and the rows preceding the last one have indices
i1, . . . , ij−1, we get

(3.4)

∣∣∣∣∣∣∣∣∣

α
ni1
h1

. . . α
ni1
hj

. . . . . . . . . . . . . . . . . . .

α
nij−1
h1

. . . α
nij−1
hj

αnh1
. . . αnhj

∣∣∣∣∣∣∣∣∣
= 0.

For any choice of h1, . . . , hj and i1, . . . , ij−1, equation (3.4) determines a
linear subspace in Ha of dimension k−2 containing the vector (αn1 , . . . , α

n
k ).

For a given j we have
(
k
j

)
choices for the columns and

(
l

j−1

)
choices for the

rows in (3.2). Summing over j satisfying (3.3) we thus do not get more than

(3.5)
min{l+1, k−1}∑

j=2

(
k

j

)(
l

j − 1

)

linear subspaces of dimension k − 2.
For l = k − 2 or l = k − 1 we can do a little better. In these cases, the

term in (3.5) corresponding to j = k − 1 can be improved. Recall that the
rows of the matrix (3.2) are solutions of

(3.6) a1x1 + . . .+ akxk = 0, where

(3.7) a1 . . . ak 6= 0.

Suppose first that l = k − 2 and that in (3.2) some (k − 1) × (k − 1)
subdeterminant vanishes. Then it follows from (3.6) and (3.7) that every
(k − 1) × (k − 1) subdeterminant vanishes. Consequently, the last row of
(3.2) is a linear combination of the preceding rows. Therefore in the counting
argument the term

(
k
k−1

)(
k−2
k−2

)
= k corresponding to j = k − 1 in (3.5) can

be replaced by 1. Hence, for l = k−2, instead of (3.5) we get not more than

(3.8) 1 +
k−2∑

j=2

(
k

j

)(
k − 2
j − 1

)

linear subspaces of dimension k − 2.
Now suppose l = k − 1. Then the matrix (3.2) has k − 1 submatrices of

order (k − 1)× k containing the row (αn1 , . . . , α
n
k ). For each such submatrix

we are in the situation treated for l = k − 2. Therefore in (3.5) the term(
k
k−1

)(
k−1
k−2

)
= k(k− 1) corresponding to j = k− 1 can be replaced by k− 1.

Consequently, for l = k − 1 we get not more than

(3.9) k − 1 +
k−2∑

j=2

(
k

j

)(
k − 1
j − 1

)

linear subspaces of dimension k − 2.
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We now compare the bounds (3.5), (3.8) and (3.9). For l ≤ k− 3 we get
min{l+1, k−1}∑

j=2

(
k

j

)(
l

j − 1

)
≤
k−2∑

j=2

(
k

j

)(
k − 3
j − 1

)
.

Combining this with (3.8) and (3.9), we see that in any case (αn1 , . . . , α
n
k ) is

contained in the union of not more than

k − 1 +
k−2∑

j=2

(
k

j

)(
k − 1
j − 1

)
= k − 1 +

k−2∑

j=2

(
k

j

)(
k − 1
k − j

)

linear subspaces of dimension k − 2.
Note that if A and B are sets containing a and b elements respectively

with A ∩ B = ∅, choosing j elements in A and k − j elements in B gives k
elements in A ∪B. Hence

min{k, a}∑

j=max{0, k−b}

(
a

j

)(
b

k − j
)

=
(
a+ b

k

)
.

In particular we have
k∑

j=1

(
k

j

)(
k − 1
k − j

)
=
(

2k − 1
k

)
,

whence

k − 1 +
k−2∑

j=2

(
k

j

)(
k − 1
k − j

)
=
(

2k − 1
k

)
− k(k − 1)− 2.

This proves Corollary 2.2.

Also √
k

22k−1

(
2k − 1
k

)

is an increasing sequence with limit π−1/2 by Stirling’s formula. Therefore
(

2k − 1
k

)
<

22k−1
√
kπ

,

and the bound (2.15) follows.

Corollary 2.3 is a direct consequence of Theorem 2.1.

4. Relation groups. Here and in the next sections K denotes a field of
characteristic zero.

We begin by quoting Theorem 1.1 of Evertse, Schlickewei and Schmidt
[4], which for convenience we state as a lemma.
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Lemma 4.1. Let n be a positive integer , and let Γ be a finitely generated
subgroup of rank r of the multiplicative group (K×)n. Let a1, . . . , an be non-
zero elements in K. Then the equation

(4.1) a1x1 + . . .+ anxn + 1 = 0

does not have more than

exp((6n)3n(r + 1))

non-degenerate solutions x = (x1, . . . , xn) ∈ Γ .

(A solution (x1, . . . , xn) of (4.1) is non-degenerate if
∑
i∈I aixi 6= 0 for

any non-empty subset I of {1, . . . , n}.)
Now suppose that we are given non-zero elements in K:

β11, . . . , β1r; . . . ; βn1, . . . , βnr; βn+1,1, . . . , βn+1,r

and consider the equation

(4.2) b1β
m
1 + . . .+ bn+1β

m
n+1 = 0

where βml = βm1
l1 . . . βmrlr (1 ≤ l ≤ n + 1), m = (m1, . . . ,mr) ∈ Zr, and

where b1, . . . , bn+1 are given non-zero elements in K. We apply Lemma 4.1
to equation (4.2).

Let P be a partition of the set Λ = {1, . . . , n + 1}. The sets λ ⊂ Λ
occurring in P will be considered elements of P: λ ∈ P. Given P, the
system of equations

(4.2P)
∑

l∈λ
blβ

m
l = 0 (λ ∈ P)

is a refinement of (4.2). If Q is a refinement of P, then (4.2Q) implies
(4.2P). Write S(P) for the set of solutions m ∈ Zr of (4.2P) which are not
solutions of (4.2Q) for any proper refinement Q of P.

For a given λ ∈ P, the equation

(4.3)
∑

l∈λ
blβ

m
l = 0

has solution vectors (βml )l∈λ = (βm1
l1 . . . βmrlr )l∈λ in a subgroup Γλ of (K×)|λ|

of rank ≤ r. By homogeneity and in view of Lemma 4.1, the number C(λ)
of non-proportional non-degenerate solutions (βml )l∈λ of equation (4.3) sat-
isfies

(4.4) C(λ) ≤ exp((6(|λ| − 1))3(|λ|−1)(r + 1)).

For simplicity of notation, suppose that λ = {1, . . . , h + 1}. We associate
with (4.3) the inhomogeneous equation

(4.5) c1γ
m
1 + . . .+ chγ

m
h + 1 = 0,
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where cl = bl/bh+1 and γml = βml /β
m
h+1 = (βl1/βh+1,1)m1 . . . (βlr/βh+1,r)mr

for 1 ≤ l ≤ h.
Let (γmj

1 , . . . ,γ
mj

h ) (1 ≤ j ≤ C(λ)) be an enumeration of the non-
degenerate solutions of (4.5). Then any non-degenerate solution (βml )l∈λ of
(4.3) will be of the form

(4.6) (βml )l∈λ = ψλ(m) (γmj

1 , . . . ,γ
mj

h , 1)

for a suitable j with 1 ≤ j ≤ C(λ) and a factor of proportionality ψλ(m) =
βmh+1. If two exponents m and m′ in (4.3) give rise to the same tuple
(γmj

1 , . . . ,γ
mj

h , 1) in (4.6), we may conclude that
(

βm1
ψλ(m)

, . . . ,
βmh+1

ψλ(m)

)
=
(

βm
′

1

ψλ(m′)
, . . . ,

βm
′

h+1

ψλ(m′)

)
,

and therefore we obtain

(4.7)
ψλ(m)
ψλ(m′)

= βm−m
′

1 = . . . = βm−m
′

h+1 .

However, for a partition P of Λ and for m,m′ ∈ S(P), the above con-
siderations have to be done simultaneously for all sets λ ∈ P. Each set
λ will produce relations (4.7), and so we have to deal with relations (4.7)
simultaneously for each λ ∈ P.

Given a partition P of Λ and l, l′ ∈ Λ, write l P∼ l′ if there exists a set
λ ∈ P such that l, l′ ∈ λ. Define the subgroup G(P) of the additive group
Zr as the set of tuples z = (z1, . . . , zr) ∈ Zr satisfying

(4.8) βzl = βzl′ for any l, l′ ∈ Λ such that l P∼ l′.
In view of (4.7), we may infer that if G(P) = {0}, then S(P) does not
contain more than

∏
λ∈P C(λ) elements. By (4.4) this implies

Lemma 4.2. Let P be a partition of Λ = {1, . . . , n + 1} such that
G(P) = {0}. Then equation (4.2) does not have more than exp((6n)3n(r+1))
solutions m ∈ S(P).

5. Relation groups for equation (1.3). Equation (1.3) is

(5.1)

∣∣∣∣∣∣∣∣

1 . . . 1
αy2

1 . . . αy2
k

. . . . . . . . . . . . . .
αyk1 . . . αykk

∣∣∣∣∣∣∣∣
= 0,

with α1, . . . , αk ∈ K× such that αi/αj is not a root of unity for i 6= j. We
write (5.1) as

(5.2)
∑

σ∈Sk

(signσ)αy1
σ(1) . . . α

yk
σ(k) = 0,
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where Sk denotes the symmetric group of the permutations of {1, . . . , k}
and where y1 = 0.

We apply the material from Section 4 to equation (5.2). Initially, this
is an equation in (y2, . . . , yk) ∈ Zk−1; however, in the following discussion
it is convenient to view it as an equation in (y1, y2, . . . , yk) ∈ Zk with the
convention that y1 = 0, as indicated above.

Given a partition P of Sk, let S(P) denote, in accordance with (4.2P),
the set of solutions (y1, y2, . . . , yk) = (0, y2, . . . , yk) ∈ Zk of the system of
equations

(5.2P)
∑

σ∈λ
(signσ)αy1

σ(1) . . . α
yk
σ(k) = 0 (λ ∈ P)

which are not solutions of any system (5.2Q) corresponding to a proper
refinement Q of P.

The analogue of (4.8) in the present context is

(5.3) αz1σ(1) . . . α
zk
σ(k) = αz1τ(1) . . . α

zk
τ(k) for any σ, τ ∈ Sk with σ

P∼ τ .
Hence we define G(P) as the additive group of the k-tuples (z1, z2, . . . , zk) =
(0, z2, . . . , zk) ∈ Zk satisfying (5.3).

In view of Lemma 4.2, we are now interested in the shape of partitions
P such that G(P) 6= {0}. Let P be such a partition. Thus there exists a
k-tuple (w1, w2, . . . , wk) = (0, w2, . . . , wk) ∈ G(P) with w2, . . . , wk not all
zero, so that (5.3) holds with zi = wi. This condition entails a structure in
suitable sets λ ∈ P. Precisely, we claim that, up to a suitable renumbering
of α1, . . . , αk, there are sets λ1, . . . , λs ∈ P (s ≥ 1) such that their union

λ∗ = λ1 ∪ . . . ∪ λs
coincides with the set of permutations σ ∈ Sk for which

(5.4) wσ−1(1) ≤ wσ−1(2) ≤ . . . ≤ wσ−1(k).

Let δ1, . . . , δk ∈ K× be multiplicatively independent elements such that

(5.5) αi = ζi δ
ai1
1 . . . δaikk (i = 1, . . . , k),

where ai1, . . . , aik are suitable integers and ζi is a root of unity for i =
1, . . . , k. Write

ai =



ai1
...
aik


 .

Substituting (5.5) into

αw1
σ(1) . . . α

wk
σ(k) = αw1

τ(1) . . . α
wk
τ(k)
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and comparing exponents, we obtain

(5.6) w1aσ(1) + . . .+ wkaσ(k) = w1aτ(1) + . . .+ wkaτ(k) for σ P∼ τ.
Note that, since αi/αj is not a root of unity for i 6= j, the vectors a1, . . . ,ak
are distinct. Pick a vector v ∈ Rk such that the inner products ci = ai · v
(i = 1, . . . , k) are distinct. We may assume without loss of generality that

(5.7) c1 < . . . < ck.

Otherwise it suffices to renumber α1, . . . , αk. The inner product by v in (5.6)
yields

w1cσ(1) + . . .+ wkcσ(k) = w1cτ(1) + . . .+ wkcτ(k),

i.e.,

(5.8) wσ−1(1)c1 + . . .+wσ−1(k)ck = wτ−1(1)c1 + . . .+wτ−1(k)ck for σ P∼ τ.
Let s be the maximal number of permutations σ inequivalent under P and
satisfying (5.4). Take s permutations σ1, . . . , σs, say, with this property, and
let λ1, . . . , λs ∈ P be such that σj ∈ λj (j = 1, . . . , s). Then λ1, . . . , λs
are distinct. By (5.7), the quantity wσ−1(1)c1 + . . . + wσ−1(k)ck is maximal
for σ ∈ Sk if and only if (5.4) holds. In particular we know that, for any
j = 1, . . . , s,

wσ−1
j

(1)c1 + . . .+ wσ−1
j

(k)ck

takes the same maximal value. By (5.8) and by the maximality of s,

wτ−1(1)c1 + . . .+ wτ−1(k)ck

is maximal if and only if

τ ∈ λ∗ = λ1 ∪ . . . ∪ λs.
We may infer that λ∗ is the set of permutations σ ∈ Sk satisfying (5.4), as
claimed.

Now consider the partition {η1, . . . , ηm} of {1, . . . , k} defined by

wi = wj for all i, j ∈ ηµ, µ = 1, . . . ,m,

wi < wj for all i ∈ ηµ, j ∈ ηµ′ , µ < µ′.

Note that m ≥ 2, for otherwise 0 = w1 = . . . = wk, contradicting the
assumption that w2, . . . , wk are not all zero. Moreover, let {ϑ1, . . . , ϑm} be
the partition of {1, . . . , k} such that

|ϑµ| = |ηµ| (µ = 1, . . . ,m)

and

i < j for all i ∈ ϑµ, j ∈ ϑµ′ , µ < µ′.
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In other words we have, for any µ = 1, . . . ,m,

ϑµ =
{ µ−1∑
%=1

|η%|+ 1,
µ−1∑
%=1

|η%|+ 2, . . . ,
µ−1∑
%=1

|η%|+ |ηµ|
}
.

Clearly the permutations σ ∈ Sk satisfying (5.4) are those for which

(5.9) σ : ηµ → ϑµ (µ = 1, . . . ,m).

Hence σ ∈ λ∗ if and only if (5.9) holds.
We now assume S(P) 6= ∅. Let (0, y2, . . . , yk) ∈ S(P). By (5.2P) we

have ∑

σ∈λj
(signσ)αy1

σ(1) . . . α
yk
σ(k) = 0 (j = 1, . . . , s),

whence, summing over j = 1, . . . , s,

(5.10)
∑

σ∈λ∗
(signσ)αy1

σ(1) . . . α
yk
σ(k) = 0.

Since λ∗ is the set of σ ∈ Sk satisfying (5.9), we obtain

∑

σ∈λ∗
(signσ)αy1

σ(1) . . . α
yk
σ(k) = ±

m∏
µ=1

det(αyih )h∈ϑµ, i∈ηµ .

By (5.10) this product vanishes. Hence for at least one µ (1 ≤ µ ≤ m) we
have

det(αyih )h∈ϑµ, i∈ηµ = 0.

This is a proper subdeterminant of (5.1), since m ≥ 2 and therefore |ϑµ| =
|ηµ| < k.

We have proved

Lemma 5.1. Let P be a partition of Sk with G(P) 6= {0}. Then for
each solution (y2, . . . , yk) ∈ Zk−1 of (5.1) such that (0, y2, . . . , yk) ∈ S(P),
a proper subdeterminant of the left-hand side of (5.1) vanishes.

6. Proof of Theorem 1.1. We use Lemmas 4.2 and 5.1. Equation (1.3),
in view of (5.2) where y1 = 0, is an instance of (4.2) with r = k − 1 and
n = k!− 1.

By Lemma 4.2, any partition P of Sk with G(P) = {0} satisfies

(6.1) |S(P)| ≤ exp((6(k!− 1))3(k!−1)k).

On the other hand, by Lemma 5.1, partitions P with G(P) 6= {0} are such
that for any solution in S(P) a proper subdeterminant vanishes. The number
of partitions of Sk is ≤ k!k!. Combining this with (6.1) we see that in fact
(1.3) does not have more than exp((6k!)3k!) solutions in general position.
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